Nsight naalysis无法追踪cuda的kernel函数

本文介绍了一种使用Nsight分析CUDA函数的方法,并分享了在调试过程中遇到的问题及解决思路。作者最初未能在Nsight中看到kernel调用详情,但在nvvp调试时发现了invaliddata窗口。通过调整kernel中显存写入值后,Nsight成功显示了相关信息。

使用Nsight来分析cudah函数,但是无法在最终结果中显示出kernel的调用情况


而使用nvvp调试时候,发现invalid data窗口, 尝试修改kernel中的显存写入值后,再使用Nsight进行分析后,结果显示成功。

可猜想,在为申请的显存中写值的时候需要注意值的格式或是精度?

这是源代码import cv2 import numpy as np import torch import torch.nn as nn import torch.nn.functional as F from typing import Tuple, Dict import time from collections import deque import tkinter as tk from tkinter import ttk import os from lut3d import LUT3D class ImageEnhancer: def init(self): # 检查CUDA是否可用 self.device = torch.device(‘cuda’ if torch.cuda.is_available() else ‘cpu’) # 初始化增强参数 self.brightness = 1.0 self.contrast = 1.0 self.sharpness = 1.0 self.saturation = 1.0 # 初始化摄像头 self.cap = cv2.VideoCapture(0) # 初始化3D LUT相关属性 self.lut = LUT3D(size=33, device=self.device) self.current_lut_name = 'identity' self.lut_strength = 1.0 self.available_luts = self._load_preset_luts() # 场景识别相关 self.auto_mode = False self.scene_presets = self._init_scene_presets() # 参数历史记录 self.history = deque(maxlen=20) self.history_position = -1 self._save_history() # 保存初始状态 # GUI相关 self.gui = None self.parameter_widgets = {} def preprocess_frame(self, frame: np.ndarray) -> torch.Tensor: """将OpenCV图像帧转换为PyTorch张量 Args: frame: BGR格式的numpy数组图像 Returns: 处理后的图像张量 (1, 3, H, W),值范围[0,1] """ # BGR转RGB frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB) # 转换为float32并归一化到[0,1] frame_norm = frame_rgb.astype(np.float32) / 255.0 # 转换为PyTorch张量并调整维度顺序 frame_tensor = torch.from_numpy(frame_norm).to(self.device) frame_tensor = frame_tensor.permute(2, 0, 1).unsqueeze(0) return frame_tensor def postprocess_frame(self, frame_tensor: torch.Tensor) -> np.ndarray: """将PyTorch张量转换回OpenCV图像格式 Args: frame_tensor: 值范围[0,1]的图像张量 (1, 3, H, W) Returns: BGR格式的numpy数组图像 """ # 转换回numpy数组并调整维度顺序 frame_np = frame_tensor.squeeze(0).permute(1, 2, 0).cpu().numpy() # 转换值范围到[0,255]并转为uint8类型 frame_np = (frame_np * 255).clip(0, 255).astype(np.uint8) # RGB转BGR frame_bgr = cv2.cvtColor(frame_np, cv2.COLOR_RGB2BGR) return frame_bgr def _init_scene_presets(self) -> Dict[str, Dict[str, float]]: """初始化不同场景的预设参数""" return { 'portrait': { 'brightness': 1.1, 'contrast': 1.2, 'saturation': 1.1, 'sharpness': 1.3, 'lut_strength': 0.8 }, 'landscape': { 'brightness': 1.0, 'contrast': 1.3, 'saturation': 1.4, 'sharpness': 1.5, 'lut_strength': 0.9 }, 'night': { 'brightness': 1.4, 'contrast': 1.1, 'saturation': 0.9, 'sharpness': 0.8, 'lut_strength': 0.7 } } def _load_preset_luts(self) -> dict: """加载预设的LUT""" presets = { 'identity': self.lut.get_identity_lut(), } # 添加预设的暖色和冷色LUT warm_lut = self.lut.get_identity_lut() self.lut.create_warm_lut(0.5) presets['warm'] = warm_lut cool_lut = self.lut.get_identity_lut() self.lut.create_cool_lut(0.5) presets['cool'] = cool_lut return presets def analyze_scene(self, frame_tensor: torch.Tensor) -> str: """基于简单规则分析场景类型""" # 计算基本图像统计信息 brightness = torch.mean(frame_tensor).item() saturation = torch.std(frame_tensor).item() # 简单场景判断规则 if brightness < 0.3: return 'night' elif saturation > 0.5: return 'landscape' else: return 'portrait' def get_current_params(self) -> Dict[str, float]: """获取当前参数状态""" return { 'brightness': self.brightness, 'contrast': self.contrast, 'saturation': self.saturation, 'sharpness': self.sharpness, 'lut_strength': self.lut_strength } def apply_params(self, params: Dict[str, float]) -> None: """应用参数设置""" self.brightness = params['brightness'] self.contrast = params['contrast'] self.saturation = params['saturation'] self.sharpness = params['sharpness'] self.lut_strength = params['lut_strength'] # 更新GUI显示(如果存在) if self.gui is not None: self._update_gui_values() def _save_history(self) -> None: """保存当前参数状态到历史记录""" current_params = self.get_current_params() # 如果在历史中间位置进行了新的修改,删除后面的记录 if self.history_position < len(self.history) - 1: while len(self.history) > self.history_position + 1: self.history.pop() self.history.append(current_params) self.history_position = len(self.history) - 1 def undo(self) -> None: """撤销操作""" if self.history_position > 0: self.history_position -= 1 self.apply_params(self.history[self.history_position]) def redo(self) -> None: """重做操作""" if self.history_position < len(self.history) - 1: self.history_position += 1 self.apply_params(self.history[self.history_position]) def init_gui(self) -> None: """初始化图形界面""" self.gui = tk.Tk() self.gui.title("图像增强控制面板") # 创建参数控制区 self._create_parameter_controls() # 创建按钮区 self._create_control_buttons() # 更新GUI显示 self._update_gui_values() def _create_parameter_controls(self) -> None: """创建参数控制滑块""" params_frame = ttk.LabelFrame(self.gui, text="参数调整") params_frame.pack(padx=5, pady=5, fill="x") parameters = { 'brightness': ('亮度', 0.0, 2.0), 'contrast': ('对比度', 0.0, 2.0), 'saturation': ('饱和度', 0.0, 2.0), 'sharpness': ('锐化', 0.0, 2.0), 'lut_strength': ('LUT强度', 0.0, 1.0) } for param, (label, min_val, max_val) in parameters.items(): frame = ttk.Frame(params_frame) frame.pack(fill="x", padx=5, pady=2) ttk.Label(frame, text=label).pack(side="left") var = tk.DoubleVar(value=getattr(self, param)) slider = ttk.Scale(frame, from_=min_val, to=max_val, variable=var, orient="horizontal") slider.pack(side="right", fill="x", expand=True) self.parameter_widgets[param] = (var, slider) var.trace_add("write", lambda *args, p=param: self._on_parameter_change(p)) def _create_control_buttons(self) -> None: """创建控制按钮""" button_frame = ttk.Frame(self.gui) button_frame.pack(padx=5, pady=5, fill="x") ttk.Button(button_frame, text="撤销", command=self.undo).pack(side="left", padx=2) ttk.Button(button_frame, text="重做", command=self.redo).pack(side="left", padx=2) auto_var = tk.BooleanVar(value=self.auto_mode) ttk.Checkbutton(button_frame, text="自动模式", variable=auto_var, command=lambda: setattr(self, 'auto_mode', auto_var.get()) ).pack(side="right", padx=2) def _update_gui_values(self) -> None: """更新GUI显示的参数值""" if self.gui is None: return for param, (var, _) in self.parameter_widgets.items(): var.set(getattr(self, param)) def _on_parameter_change(self, parameter: str) -> None: """参数变化回调""" if not self.auto_mode: value = self.parameter_widgets[parameter][0].get() setattr(self, parameter, value) self._save_history() def enhance_frame(self, frame_tensor: torch.Tensor) -> torch.Tensor: """增强图像帧""" if self.auto_mode: # 分析场景并应用相应的预设 scene_type = self.analyze_scene(frame_tensor) preset = self.scene_presets[scene_type] old_params = self.get_current_params() self.apply_params(preset) enhanced = self._enhance_frame_internal(frame_tensor) self.apply_params(old_params) return enhanced else: return self._enhance_frame_internal(frame_tensor) def _enhance_frame_internal(self, frame_tensor: torch.Tensor) -> torch.Tensor: """内部图像增强处理 Args: frame_tensor: 输入图像张量 (B, C, H, W),值范围[0,1] Returns: 处理后的图像张量 (B, C, H, W),值范围[0,1] """ # 确保输入张量在[0,1]范围内 frame_tensor = torch.clamp(frame_tensor, 0, 1) # 亮度调整 enhanced = frame_tensor * self.brightness # 对比度调整 mean = torch.mean(enhanced) enhanced = (enhanced - mean) * self.contrast + mean # 饱和度调整 gray = torch.mean(enhanced, dim=1, keepdim=True) enhanced = torch.lerp(gray, enhanced, self.saturation) # 锐化处理 if self.sharpness > 1.0: laplacian = torch.tensor([ [0, -1, 0], [-1, 4, -1], [0, -1, 0] ], dtype=torch.float32).to(self.device) laplacian = laplacian.view(1, 1, 3, 3).repeat(3, 1, 1, 1) sharp = F.conv2d(enhanced, laplacian, padding=1, groups=3) enhanced = enhanced + (self.sharpness - 1) * sharp # 应用3D LUT if self.lut_strength > 0: try: lut_enhanced = self.lut.apply(enhanced) enhanced = torch.lerp(enhanced, lut_enhanced, self.lut_strength) except Exception as e: print(f"应用LUT时出错: {e}") # 确保输出在[0,1]范围内 enhanced = torch.clamp(enhanced, 0, 1) return enhanced def run(self): # 初始化GUI self.init_gui() try: while True: ret, frame = self.cap.read() if not ret: break start_time = time.time() frame_tensor = self.preprocess_frame(frame) enhanced_tensor = self.enhance_frame(frame_tensor) enhanced_frame = self.postprocess_frame(enhanced_tensor) fps = 1.0 / (time.time() - start_time) # 显示信息 cv2.putText(enhanced_frame, f'LUT: {self.current_lut_name} ({self.lut_strength:.2f})', (10, 30), cv2.FONT_HERSHEY_SIMPLEX, 0.7, (0, 255, 0), 2) cv2.putText(enhanced_frame, f'Mode: {"Auto" if self.auto_mode else "Manual"}', (10, 60), cv2.FONT_HERSHEY_SIMPLEX, 0.7, (0, 255, 0), 2) cv2.imshow('Enhanced', enhanced_frame) cv2.imshow('Original', frame) # 处理键盘输入 key = cv2.waitKey(1) & 0xFF if key == ord('q'): break elif key == ord('['): self.set_lut_strength(self.lut_strength - 0.1) elif key == ord(']'): self.set_lut_strength(self.lut_strength + 0.1) elif key == ord('z'): # 撤销 self.undo() elif key == ord('y'): # 重做 self.redo() # 更新GUI self.gui.update() finally: self.cap.release() cv2.destroyAllWindows() if self.gui is not None: self.gui.destroy() if name == ‘main’: enhancer = ImageEnhancer() enhancer.run() 下面这是lut3d.py代码import numpy as np import torch import torch.nn.functional as F from typing import Optional, Tuple, Union import os class LUT3D: def __init__(self, size: int = 33, device: Optional[torch.device] = None): """初始化3D LUT Args: size: LUT的大小 (size x size x size) device: 运行设备 (CPU/GPU) """ self.size = size self.device = device or torch.device('cuda' if torch.cuda.is_available() else 'cpu') # 创建标准网格点 self.grid = self._create_identity_lut() def _create_identity_lut(self) -> torch.Tensor: """创建单位LUT""" indices = torch.linspace(0, 1, self.size, device=self.device) r, g, b = torch.meshgrid([indices, indices, indices]) grid = torch.stack([r, g, b], dim=-1) return grid.unsqueeze(0) def get_identity_lut(self) -> torch.Tensor: """获取恒等映射LUT""" return self.grid.clone() def apply(self, image: torch.Tensor) -> torch.Tensor: """应用3D LUT到图像 Args: image: 输入图像张量 (B, C, H, W),值范围[0,1] Returns: 处理后的图像张量 (B, C, H, W) """ B, C, H, W = image.shape # 将图像重塑为 (B*H*W, C) image_flat = image.permute(0, 2, 3, 1).reshape(-1, 3) # 计算在LUT中的索引位置 scaled_input = image_flat * (self.size - 1) # 确保索引在有效范围内 scaled_input = torch.clamp(scaled_input, 0, self.size - 1) lower = scaled_input.floor().long() upper = (lower + 1).clamp(max=self.size-1) slope = scaled_input - lower # 获取每个通道的索引 lower_r, lower_g, lower_b = torch.chunk(lower, 3, dim=1) upper_r, upper_g, upper_b = torch.chunk(upper, 3, dim=1) slope_r, slope_g, slope_b = torch.chunk(slope, 3, dim=1) def get_lut_value(r, g, b): """获取LUT中的值 Args: r, g, b: 索引张量 Returns: 对应位置的LUT值 """ # 计算在展平的LUT中的索引 idx = (r * self.size * self.size + g * self.size + b).long() # 确保索引在有效范围内 idx = torch.clamp(idx, 0, self.size**3 - 1) return torch.index_select(self.grid, 0, idx.squeeze(-1)) # 获取8个相邻点的值 c000 = get_lut_value(lower_r, lower_g, lower_b) c001 = get_lut_value(lower_r, lower_g, upper_b) c010 = get_lut_value(lower_r, upper_g, lower_b) c011 = get_lut_value(lower_r, upper_g, upper_b) c100 = get_lut_value(upper_r, lower_g, lower_b) c101 = get_lut_value(upper_r, lower_g, upper_b) c110 = get_lut_value(upper_r, upper_g, lower_b) c111 = get_lut_value(upper_r, upper_g, upper_b) # 三线性插值 c00 = c000 * (1 - slope_b) + c001 * slope_b c01 = c010 * (1 - slope_b) + c011 * slope_b c10 = c100 * (1 - slope_b) + c101 * slope_b c11 = c110 * (1 - slope_b) + c111 * slope_b c0 = c00 * (1 - slope_g) + c01 * slope_g c1 = c10 * (1 - slope_g) + c11 * slope_g output = c0 * (1 - slope_r) + c1 * slope_r # 重塑回原始形状 return output.reshape(B, H, W, 3).permute(0, 3, 1, 2) def load_from_file(self, file_path: str) -> None: """从文件加载LUT数据 目前支持.npy格式的LUT文件 """ if not os.path.exists(file_path): raise FileNotFoundError(f"LUT文件不存在: {file_path}") if file_path.endswith('.npy'): lut_data = np.load(file_path) if lut_data.shape[-1] != 3: raise ValueError("LUT数据格式错误:最后一维必须是3(RGB)") self.grid = torch.from_numpy(lut_data).float().to(self.device) else: raise ValueError("不支持的文件格式") def save_to_file(self, file_path: str) -> None: """保存LUT数据到文件""" lut_data = self.grid.cpu().numpy() np.save(file_path, lut_data) def modify_lut(self, transform_func) -> None: """修改LUT数据 Args: transform_func: 接收和返回torch.Tensor的变换函数 """ self.grid = transform_func(self.grid) def create_warm_lut(self, strength: float = 0.5) -> None: """创建暖色调LUT""" def warm_transform(x): # 增加红色分量,减少蓝色分量 x = x.clone() x[:, 0] = torch.clamp(x[:, 0] + strength * 0.2, 0, 1) # 红色 x[:, 2] = torch.clamp(x[:, 2] - strength * 0.1, 0, 1) # 蓝色 return x self.modify_lut(warm_transform) def create_cool_lut(self, strength: float = 0.5) -> None: """创建冷色调LUT""" def cool_transform(x): # 增加蓝色分量,减少红色分量 x = x.clone() x[:, 2] = torch.clamp(x[:, 2] + strength * 0.2, 0, 1) # 蓝色 x[:, 0] = torch.clamp(x[:, 0] - strength * 0.1, 0, 1) # 红色 return x self.modify_lut(cool_transform) 我要在不影响画质的情况下提高帧率使得实验能在使用中流畅运行
最新发布
05-31
这是源代码import cv2 import numpy as np import torch import torch.nn as nn import torch.nn.functional as F from typing import Tuple, Dict import time from collections import deque import tkinter as tk from tkinter import ttk import os from lut3d import LUT3D class ImageEnhancer: def __init__(self): # 检查CUDA是否可用 self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') # 初始化增强参数 self.brightness = 1.0 self.contrast = 1.0 self.sharpness = 1.0 self.saturation = 1.0 # 初始化摄像头 self.cap = cv2.VideoCapture(0) # 初始化3D LUT相关属性 self.lut = LUT3D(size=33, device=self.device) self.current_lut_name = 'identity' self.lut_strength = 1.0 self.available_luts = self._load_preset_luts() # 场景识别相关 self.auto_mode = False self.scene_presets = self._init_scene_presets() # 参数历史记录 self.history = deque(maxlen=20) self.history_position = -1 self._save_history() # 保存初始状态 # GUI相关 self.gui = None self.parameter_widgets = {} def preprocess_frame(self, frame: np.ndarray) -> torch.Tensor: """将OpenCV图像帧转换为PyTorch张量 Args: frame: BGR格式的numpy数组图像 Returns: 处理后的图像张量 (1, 3, H, W),值范围[0,1] """ # BGR转RGB frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB) # 转换为float32并归一化到[0,1] frame_norm = frame_rgb.astype(np.float32) / 255.0 # 转换为PyTorch张量并调整维度顺序 frame_tensor = torch.from_numpy(frame_norm).to(self.device) frame_tensor = frame_tensor.permute(2, 0, 1).unsqueeze(0) return frame_tensor def postprocess_frame(self, frame_tensor: torch.Tensor) -> np.ndarray: """将PyTorch张量转换回OpenCV图像格式 Args: frame_tensor: 值范围[0,1]的图像张量 (1, 3, H, W) Returns: BGR格式的numpy数组图像 """ # 转换回numpy数组并调整维度顺序 frame_np = frame_tensor.squeeze(0).permute(1, 2, 0).cpu().numpy() # 转换值范围到[0,255]并转为uint8类型 frame_np = (frame_np * 255).clip(0, 255).astype(np.uint8) # RGB转BGR frame_bgr = cv2.cvtColor(frame_np, cv2.COLOR_RGB2BGR) return frame_bgr def _init_scene_presets(self) -> Dict[str, Dict[str, float]]: """初始化不同场景的预设参数""" return { 'portrait': { 'brightness': 1.1, 'contrast': 1.2, 'saturation': 1.1, 'sharpness': 1.3, 'lut_strength': 0.8 }, 'landscape': { 'brightness': 1.0, 'contrast': 1.3, 'saturation': 1.4, 'sharpness': 1.5, 'lut_strength': 0.9 }, 'night': { 'brightness': 1.4, 'contrast': 1.1, 'saturation': 0.9, 'sharpness': 0.8, 'lut_strength': 0.7 } } def _load_preset_luts(self) -> dict: """加载预设的LUT""" presets = { 'identity': self.lut.get_identity_lut(), } # 添加预设的暖色和冷色LUT warm_lut = self.lut.get_identity_lut() self.lut.create_warm_lut(0.5) presets['warm'] = warm_lut cool_lut = self.lut.get_identity_lut() self.lut.create_cool_lut(0.5) presets['cool'] = cool_lut return presets def analyze_scene(self, frame_tensor: torch.Tensor) -> str: """基于简单规则分析场景类型""" # 计算基本图像统计信息 brightness = torch.mean(frame_tensor).item() saturation = torch.std(frame_tensor).item() # 简单场景判断规则 if brightness < 0.3: return 'night' elif saturation > 0.5: return 'landscape' else: return 'portrait' def get_current_params(self) -> Dict[str, float]: """获取当前参数状态""" return { 'brightness': self.brightness, 'contrast': self.contrast, 'saturation': self.saturation, 'sharpness': self.sharpness, 'lut_strength': self.lut_strength } def apply_params(self, params: Dict[str, float]) -> None: """应用参数设置""" self.brightness = params['brightness'] self.contrast = params['contrast'] self.saturation = params['saturation'] self.sharpness = params['sharpness'] self.lut_strength = params['lut_strength'] # 更新GUI显示(如果存在) if self.gui is not None: self._update_gui_values() def _save_history(self) -> None: """保存当前参数状态到历史记录""" current_params = self.get_current_params() # 如果在历史中间位置进行了新的修改,删除后面的记录 if self.history_position < len(self.history) - 1: while len(self.history) > self.history_position + 1: self.history.pop() self.history.append(current_params) self.history_position = len(self.history) - 1 def undo(self) -> None: """撤销操作""" if self.history_position > 0: self.history_position -= 1 self.apply_params(self.history[self.history_position]) def redo(self) -> None: """重做操作""" if self.history_position < len(self.history) - 1: self.history_position += 1 self.apply_params(self.history[self.history_position]) def init_gui(self) -> None: """初始化图形界面""" self.gui = tk.Tk() self.gui.title("图像增强控制面板") # 创建参数控制区 self._create_parameter_controls() # 创建按钮区 self._create_control_buttons() # 更新GUI显示 self._update_gui_values() def _create_parameter_controls(self) -> None: """创建参数控制滑块""" params_frame = ttk.LabelFrame(self.gui, text="参数调整") params_frame.pack(padx=5, pady=5, fill="x") parameters = { 'brightness': ('亮度', 0.0, 2.0), 'contrast': ('对比度', 0.0, 2.0), 'saturation': ('饱和度', 0.0, 2.0), 'sharpness': ('锐化', 0.0, 2.0), 'lut_strength': ('LUT强度', 0.0, 1.0) } for param, (label, min_val, max_val) in parameters.items(): frame = ttk.Frame(params_frame) frame.pack(fill="x", padx=5, pady=2) ttk.Label(frame, text=label).pack(side="left") var = tk.DoubleVar(value=getattr(self, param)) slider = ttk.Scale(frame, from_=min_val, to=max_val, variable=var, orient="horizontal") slider.pack(side="right", fill="x", expand=True) self.parameter_widgets[param] = (var, slider) var.trace_add("write", lambda *args, p=param: self._on_parameter_change(p)) def _create_control_buttons(self) -> None: """创建控制按钮""" button_frame = ttk.Frame(self.gui) button_frame.pack(padx=5, pady=5, fill="x") ttk.Button(button_frame, text="撤销", command=self.undo).pack(side="left", padx=2) ttk.Button(button_frame, text="重做", command=self.redo).pack(side="left", padx=2) auto_var = tk.BooleanVar(value=self.auto_mode) ttk.Checkbutton(button_frame, text="自动模式", variable=auto_var, command=lambda: setattr(self, 'auto_mode', auto_var.get()) ).pack(side="right", padx=2) def _update_gui_values(self) -> None: """更新GUI显示的参数值""" if self.gui is None: return for param, (var, _) in self.parameter_widgets.items(): var.set(getattr(self, param)) def _on_parameter_change(self, parameter: str) -> None: """参数变化回调""" if not self.auto_mode: value = self.parameter_widgets[parameter][0].get() setattr(self, parameter, value) self._save_history() def enhance_frame(self, frame_tensor: torch.Tensor) -> torch.Tensor: """增强图像帧""" if self.auto_mode: # 分析场景并应用相应的预设 scene_type = self.analyze_scene(frame_tensor) preset = self.scene_presets[scene_type] old_params = self.get_current_params() self.apply_params(preset) enhanced = self._enhance_frame_internal(frame_tensor) self.apply_params(old_params) return enhanced else: return self._enhance_frame_internal(frame_tensor) def _enhance_frame_internal(self, frame_tensor: torch.Tensor) -> torch.Tensor: """内部图像增强处理 Args: frame_tensor: 输入图像张量 (B, C, H, W),值范围[0,1] Returns: 处理后的图像张量 (B, C, H, W),值范围[0,1] """ # 确保输入张量在[0,1]范围内 frame_tensor = torch.clamp(frame_tensor, 0, 1) # 亮度调整 enhanced = frame_tensor * self.brightness # 对比度调整 mean = torch.mean(enhanced) enhanced = (enhanced - mean) * self.contrast + mean # 饱和度调整 gray = torch.mean(enhanced, dim=1, keepdim=True) enhanced = torch.lerp(gray, enhanced, self.saturation) # 锐化处理 if self.sharpness > 1.0: laplacian = torch.tensor([ [0, -1, 0], [-1, 4, -1], [0, -1, 0] ], dtype=torch.float32).to(self.device) laplacian = laplacian.view(1, 1, 3, 3).repeat(3, 1, 1, 1) sharp = F.conv2d(enhanced, laplacian, padding=1, groups=3) enhanced = enhanced + (self.sharpness - 1) * sharp # 应用3D LUT if self.lut_strength > 0: try: lut_enhanced = self.lut.apply(enhanced) enhanced = torch.lerp(enhanced, lut_enhanced, self.lut_strength) except Exception as e: print(f"应用LUT时出错: {e}") # 确保输出在[0,1]范围内 enhanced = torch.clamp(enhanced, 0, 1) return enhanced def run(self): # 初始化GUI self.init_gui() try: while True: ret, frame = self.cap.read() if not ret: break start_time = time.time() frame_tensor = self.preprocess_frame(frame) enhanced_tensor = self.enhance_frame(frame_tensor) enhanced_frame = self.postprocess_frame(enhanced_tensor) fps = 1.0 / (time.time() - start_time) # 显示信息 cv2.putText(enhanced_frame, f'LUT: {self.current_lut_name} ({self.lut_strength:.2f})', (10, 30), cv2.FONT_HERSHEY_SIMPLEX, 0.7, (0, 255, 0), 2) cv2.putText(enhanced_frame, f'Mode: {"Auto" if self.auto_mode else "Manual"}', (10, 60), cv2.FONT_HERSHEY_SIMPLEX, 0.7, (0, 255, 0), 2) cv2.imshow('Enhanced', enhanced_frame) cv2.imshow('Original', frame) # 处理键盘输入 key = cv2.waitKey(1) & 0xFF if key == ord('q'): break elif key == ord('['): self.set_lut_strength(self.lut_strength - 0.1) elif key == ord(']'): self.set_lut_strength(self.lut_strength + 0.1) elif key == ord('z'): # 撤销 self.undo() elif key == ord('y'): # 重做 self.redo() # 更新GUI self.gui.update() finally: self.cap.release() cv2.destroyAllWindows() if self.gui is not None: self.gui.destroy() if __name__ == '__main__': enhancer = ImageEnhancer() enhancer.run()
05-31
<think>嗯,用户想要寻找关于“night compute”的使用教程,以及适合学习和分析的CUDA函数示例。首先,我需要确认“night compute”是否是正确的术语,或者是否存在拼写错误。可能用户指的是“NVIDIA Compute”或者“CUDA Night”之类的工具?但更可能的是,用户可能打错了,应该是“NVIDIA CUDA”相关的计算工具,或者特定的库或框架。 接下来,我需要检查是否有“night compute”这个官方术语。经过快速搜索,似乎没有直接相关的结果。考虑到用户提到了CUDA函数示例,可能用户是想了解如何在夜间或低负载时段进行计算的优化,或者可能是指某个特定的工具或库名称存在拼写错误。比如,是否有“NVIDIA Compute”相关的工具,或者用户可能想指的是“CUDA Toolkit”中的某个组件? 假设用户可能拼写错误,正确的术语可能是“CUDA Compute”或者“NVIDIA Compute”。例如,CUDA是NVIDIA的并行计算平台,而“CUDA Compute Capability”指的是设备的计算能力版本。因此,用户可能想了解如何利用CUDA进行计算的教程,特别是在特定环境下的使用,比如夜间资源调度等,或者某个名为“Night Compute”的工具,但可能性较低。 接下来,用户需要一份适合学习和分析的CUDA函数示例。这里需要提供一个简单的CUDA函数代码,并解释其结构,帮助用户理解和分析。例如,向量加法是一个常见的入门示例,适合展示核函数的编写、内存管理以及执行配置。 同时,用户可能希望教程内容涵盖环境配置、核函数编写、编译运行步骤以及性能分析。需要确保提供的示例代码语法正确,并符合CUDA最佳实践,比如错误检查、内存释放等。 此外,引用用户提供的站内引用,其中引用[2]提到了TensorFlow中使用CPU和GPU进行操作的示例,可能用户对设备分配和GPU计算有兴趣,因此在回答中可以强调CUDA函数在GPU上的执行,以及与CPU的协同工作。 总结步骤: 1. 澄清可能的术语错误,假设用户指的是CUDA相关教程。 2. 提供CUDA环境配置的基本信息。 3. 编写一个简单的CUDA函数示例(如向量加法),并详细解释各部分的作用。 4. 包括编译指令和运行说明。 5. 添加性能分析建议,帮助用户理解如何优化核函数。 6. 结合用户提供的引用,特别是关于设备分配的部分,引用[2]中的内容可以关联到CUDA中设备操作的示例。</think>[用户可见层] ### 一、关于"NIGHT COMPUTE"的术语澄清 经核查,"night compute"并非标准技术术语,推测可能存在以下两种情况: 1. **术语拼写误差**:可能指NVIDIA CUDA计算技术相关教程 2. **特定场景需求**:指在夜间计算资源空闲时段进行GPU计算的优化策略 以下提供标准的CUDA函数开发教程与示例分析。 ### 二、CUDA开发环境配置 1. 安装CUDA Toolkit(最新版本12.2) ```bash wget https://developer.download.nvidia.com/compute/cuda/repos/ubuntu2204/x86_64/cuda-ubuntu2204.pin sudo mv cuda-ubuntu2204.pin /etc/apt/preferences.d/cuda-repository-pin-600 sudo apt-get install cuda ``` 2. 验证安装: ```bash nvcc --version nvidia-smi ``` ### 三、CUDA函数示例:向量加法 ```c++ #include <stdio.h> #include <cuda_runtime.h> // CUDA函数定义 __global__ void vectorAdd(int *a, int *b, int *c, int n) { int tid = blockIdx.x * blockDim.x + threadIdx.x; if (tid < n) { c[tid] = a[tid] + b[tid]; } } int main() { const int N = 1024; int *h_a, *h_b, *h_c; // 主机内存 int *d_a, *d_b, *d_c; // 设备内存 // 分配主机内存 h_a = (int*)malloc(N * sizeof(int)); h_b = (int*)malloc(N * sizeof(int)); h_c = (int*)malloc(N * sizeof(int)); // 初始化数据 for (int i = 0; i < N; i++) { h_a[i] = i; h_b[i] = i * 2; } // 分配设备内存 cudaMalloc(&d_a, N * sizeof(int)); cudaMalloc(&d_b, N * sizeof(int)); cudaMalloc(&d_c, N * sizeof(int)); // 拷贝数据到设备 cudaMemcpy(d_a, h_a, N * sizeof(int), cudaMemcpyHostToDevice); cudaMemcpy(d_b, h_b, N * sizeof(int), cudaMemcpyHostToDevice); // 执行核函数 int threadsPerBlock = 256; int blocksPerGrid = (N + threadsPerBlock - 1) / threadsPerBlock; vectorAdd<<<blocksPerGrid, threadsPerBlock>>>(d_a, d_b, d_c, N); // 拷贝结果回主机 cudaMemcpy(h_c, d_c, N * sizeof(int), cudaMemcpyDeviceToHost); // 验证结果 for (int i = 0; i < N; i++) { if (h_c[i] != h_a[i] + h_b[i]) { printf("Error at index %d\n", i); break; } } // 释放内存 cudaFree(d_a); cudaFree(d_b); cudaFree(d_c); free(h_a); free(h_b); free(h_c); return 0; } ``` ### 四、关键代码解析 1. **核函数定义**:使用`__global__`修饰符声明GPU核函数 2. **线程索引计算**: $$ \text{tid} = \text{blockIdx}.x \times \text{blockDim}.x + \text{threadIdx}.x $$ 3. **内存管理**: - `cudaMalloc`:分配设备内存 - `cudaMemcpy`:主机与设备间数据传输 4. **执行配置**: ```cpp <<<blocksPerGrid, threadsPerBlock>>> ``` 表示每个网格包含的块数和每个块包含的线程数 ### 五、编译与运行 ```bash nvcc -o vector_add vector_add.cu ./vector_add ``` ### 六、性能分析建议 1. 使用`nvprof`进行性能剖析: ```bash nvprof ./vector_add ``` 2. 观察指标: - 核函数执行时间 - 内存传输带宽 - SM(流多处理器)利用率 ### 七、学习资源推荐 1. [NVIDIA CUDA官方文档](https://docs.nvidia.com/cuda/) 2. 《CUDA C编程权威指南》 3. CUDA Samples(随Toolkit安装)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值