桥接模式

桥接模式是一种结构型设计模式,旨在将抽象化与实现化解耦,允许两者独立变化。该模式通过接口桥接,使得实体类能独立于实现类进行扩展。在实际例子中,如绘制不同颜色的圆,通过桥接模式可以轻松切换颜色实现,体现出其优秀的扩展能力和透明性。这种模式在多角度变化的系统中尤其适用,减少了类爆炸问题,提高了代码的灵活性。

桥接(Bridge)是用于把抽象化与实现化解耦,使得二者可以独立变化。这种类型的设计模式属于结构型模式,它通过提供抽象化和实现化之间的桥接结构,来实现二者的解耦。

这种模式涉及到一个作为桥接的接口,使得实体类的功能独立于接口实现类。这两种类型的类可被结构化改变而互不影响。

我们通过下面的实例来演示桥接模式(Bridge Pattern)的用法。其中,可以使用相同的抽象类方法但是不同的桥接实现类,来画出不同颜色的圆。

介绍

意图:将抽象部分与实现部分分离,使它们都可以独立的变化。

主要解决:在有多种可能会变化的情况下,用继承会造成类爆炸问题,扩展起来不灵活。

何时使用:实现系统可能有多个角度分类,每一种角度都可能变化。

如何解决:把这种多角度分类分离出来,让它们独立变化,减少它们之间耦合。

关键代码:抽象类依赖实现类。

应用实例 :1、猪八戒从天蓬元帅转世投胎到猪,转世投胎的机制将尘世划分为两个等级,即:灵魂和肉体,前者相当于抽象化,后者相当于实现化。生灵通过功能的委派,调用肉体对象的功能,使得生灵可以动态地选择。 2、墙上的开关,可以看到的开关是抽象的,不用管里面具体怎么实现的。

优点 :1、抽象和实现的分离。 2、优秀的扩展能力。 3、实现细节对客户透明。

缺点:桥接模式的引入会增加系统的理解与设计难度,由于聚合关联关系建立在抽象层,要求开发者针对抽象进行设计与编程。

使用场景 :1、如果一个系统需要在构件的抽象化角色和具体化角色之间增加更多的灵活性,避免在两个层次之间建立静态的继承联系,通过桥接模式可以使它们在抽象层建立一个关联关系。 2、对于那些不希望使用继承或因为多层次继承导致系统类的个数急剧增加的系统,桥接模式尤为适用。 3、一个类存在两个独立变化的维度,且这两个维度都需要进行扩展。

注意事项:对于两个独立变化的维度,使用桥接模式再适合不过了。

实现

我们有一个作为桥接实现的 DrawApi 接口和实现了 DrawApi 接口的实体类 RedCircleGreenCircleShape 是一个抽象类,将使用 DrawApi 的对象。BridgePatternDemo,我们的演示类使用 Shape 类来画出不同颜色的圆。

桥接模式

步骤 1

创建桥接实现接口。

DrawApi.java

public interface DrawApi {

    void drawCircle(int radius, int x, int y);

}

步骤 2

创建实现了 DrawApi 接口的实体桥接实现类。

RedCircle.java

public class RedCircle implements DrawApi {

    @Override
    public void drawCircle(int radius, int x, int y) {
        System.out.println("Drawing Circle[ color: red, radius: "
                + radius +", x: " +x+", y: "+ y +"]");
    }
}

GreenCircle.java

public class GreenCircle implements DrawApi {
    @Override
    public void drawCircle(int radius, int x, int y) {
        System.out.println("Drawing Circle[ color: green, radius: "
                + radius + ", x: " + x + ", y: " + y + "]");
    }
}

步骤 3

使用 DrawApi 接口创建抽象类 Shape

Shape.java

public abstract class Shape {

    protected DrawApi drawApi;

    protected Shape(DrawApi drawApi) {
        this.drawApi = drawApi;
    }

    public abstract void draw();

}

步骤 4

创建实现了 Shape 接口的实体类。

Circle.java

public class Circle extends Shape {

    int x, y, radius;

    protected Circle(int x, int y, int radius, DrawApi drawApi) {
        super(drawApi);
        this.x = x;
        this.y = y;
        this.radius = radius;
    }

    @Override
    public void draw() {
        drawApi.drawCircle(radius, x, y);
    }

}

步骤 5

使用 Shape 和 DrawApi 类画出不同颜色的圆。

BridgePatternDemo.java

public class BridgePatternDemo {

    public static void main(String[] args) {
        Shape redCircle = new Circle(100, 100, 10, new RedCircle());
        Shape greenCircle = new Circle(100, 100, 10, new GreenCircle());

        redCircle.draw();
        greenCircle.draw();
    }

}

步骤 6

验证输出。

Drawing Circle[ color: red, radius: 10, x: 100, y: 100]
Drawing Circle[ color: green, radius: 10, x: 100, y: 100]
C语言-光伏MPPT算法:电导增量法扰动观察法+自动全局搜索Plecs最大功率跟踪算法仿真内容概要:本文档主要介绍了一种基于C语言实现的光伏最大功率点跟踪(MPPT)算法,结合电导增量法与扰动观察法,并引入自动全局搜索策略,利用Plecs仿真工具对算法进行建模与仿真验证。文档重点阐述了两种经典MPPT算法的原理、优缺点及其在不同光照和温度条件下的动态响应特性,同时提出一种改进的复合控制策略以提升系统在复杂环境下的跟踪精度与稳定性。通过仿真结果对比分析,验证了所提方法在快速性和准确性方面的优势,适用于光伏发电系统的高效能量转换控制。; 适合人群:具备一定C语言编程基础和电力电子知识背景,从事光伏系统开发、嵌入式控制或新能源技术研发的工程师及高校研究人员;工作年限1-3年的初级至中级研发人员尤为适合。; 使用场景及目标:①掌握电导增量法与扰动观察法在实际光伏系统中的实现机制与切换逻辑;②学习如何在Plecs中搭建MPPT控制系统仿真模型;③实现自动全局搜索以避免传统算法陷入局部峰值问题,提升复杂工况下的最大功率追踪效率;④为光伏逆变器或太阳能充电控制器的算法开发提供技术参考与实现范例。; 阅读建议:建议读者结合文中提供的C语言算法逻辑与Plecs仿真模型同步学习,重点关注算法判断条件、步长调节策略及仿真参数设置。在理解基本原理的基础上,可通过修改光照强度、温度变化曲线等外部扰动因素,进一步测试算法鲁棒性,并尝试将其移植到实际嵌入式平台进行实验验证。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值