欢迎使用优快云-markdown编辑器

本文介绍了一款基于Markdown的编辑器,支持丰富的扩展功能如代码高亮、LaTeX公式、UML图表等,并具备离线写作及自动保存功能。

欢迎使用Markdown编辑器写博客

本Markdown编辑器使用StackEdit修改而来,用它写博客,将会带来全新的体验哦:

  • Markdown和扩展Markdown简洁的语法
  • 代码块高亮
  • 图片链接和图片上传
  • LaTex数学公式
  • UML序列图和流程图
  • 离线写博客
  • 导入导出Markdown文件
  • 丰富的快捷键

快捷键

  • 加粗 Ctrl + B
  • 斜体 Ctrl + I
  • 引用 Ctrl + Q
  • 插入链接 Ctrl + L
  • 插入代码 Ctrl + K
  • 插入图片 Ctrl + G
  • 提升标题 Ctrl + H
  • 有序列表 Ctrl + O
  • 无序列表 Ctrl + U
  • 横线 Ctrl + R
  • 撤销 Ctrl + Z
  • 重做 Ctrl + Y

Markdown及扩展

Markdown 是一种轻量级标记语言,它允许人们使用易读易写的纯文本格式编写文档,然后转换成格式丰富的HTML页面。 —— [ 维基百科 ]

使用简单的符号标识不同的标题,将某些文字标记为粗体或者斜体,创建一个链接等,详细语法参考帮助?。

本编辑器支持 Markdown Extra ,  扩展了很多好用的功能。具体请参考Github.

表格

Markdown Extra 表格语法:

项目价格
Computer$1600
Phone$12
Pipe$1

可以使用冒号来定义对齐方式:

项目价格数量
Computer1600 元5
Phone12 元12
Pipe1 元234

定义列表

Markdown Extra 定义列表语法: 项目1 项目2
定义 A
定义 B
项目3
定义 C

定义 D

定义D内容

代码块

代码块语法遵循标准markdown代码,例如:

@requires_authorization
def somefunc(param1='', param2=0):
    '''A docstring'''
    if param1 > param2: # interesting
        print 'Greater'
    return (param2 - param1 + 1) or None
class SomeClass:
    pass
>>> message = '''interpreter
... prompt'''

脚注

生成一个脚注1.

目录

[TOC]来生成目录:

数学公式

使用MathJax渲染LaTex 数学公式,详见math.stackexchange.com.

  • 行内公式,数学公式为: Γ(n)=(n1)!n
  • 块级公式:

x=b±b24ac2a

更多LaTex语法请参考 这儿.

UML 图:

可以渲染序列图:

Created with Raphaël 2.1.0 张三 张三 李四 李四 嘿,小四儿, 写博客了没? 李四愣了一下,说: 忙得吐血,哪有时间写。

或者流程图:

Created with Raphaël 2.1.0 开始 我的操作 确认? 结束 yes no
  • 关于 序列图 语法,参考 这儿,
  • 关于 流程图 语法,参考 这儿.

离线写博客

即使用户在没有网络的情况下,也可以通过本编辑器离线写博客(直接在曾经使用过的浏览器中输入write.blog.youkuaiyun.com/mdeditor即可。Markdown编辑器使用浏览器离线存储将内容保存在本地。

用户写博客的过程中,内容实时保存在浏览器缓存中,在用户关闭浏览器或者其它异常情况下,内容不会丢失。用户再次打开浏览器时,会显示上次用户正在编辑的没有发表的内容。

博客发表后,本地缓存将被删除。 

用户可以选择 把正在写的博客保存到服务器草稿箱,即使换浏览器或者清除缓存,内容也不会丢失。

注意:虽然浏览器存储大部分时候都比较可靠,但为了您的数据安全,在联网后,请务必及时发表或者保存到服务器草稿箱

浏览器兼容

  1. 目前,本编辑器对Chrome浏览器支持最为完整。建议大家使用较新版本的Chrome。
  2. IE9以下不支持
  3. IE9,10,11存在以下问题
    1. 不支持离线功能
    2. IE9不支持文件导入导出
    3. IE10不支持拖拽文件导入


  1. 这里是 脚注内容.
【多变量输入超前多步预测】基于CNN-BiLSTM的光伏功率预测研究(Matlab代码实现)内容概要:本文介绍了基于CNN-BiLSTM模型的多变量输入超前多步光伏功率预测方法,并提供了Matlab代码实现。该研究结合卷积神经网络(CNN)强大的特征提取能力与双向长短期记忆网络(BiLSTM)对时间序列前后依赖关系的捕捉能力,构建了一个高效的深度学习预测模型。模型输入包含多个影响光伏发电的气象与环境变量,能够实现对未来多个时间步长的光伏功率进行精确预测,适用于复杂多变的实际应用场景。文中详细阐述了数据预处理、模型结构设计、训练流程及实验验证过程,展示了该方法相较于传统模型在预测精度和稳定性方面的优势。; 适合人群:具备一定机器学习和深度学习基础,熟悉Matlab编程,从事新能源预测、电力系统分析或相关领域研究的研发人员与高校研究生。; 使用场景及目标:①应用于光伏电站功率预测系统,提升电网调度的准确性与稳定性;②为可再生能源并网管理、能量存储规划及电力市场交易提供可靠的数据支持;③作为深度学习在时间序列多步预测中的典型案例,用于科研复现与教学参考。; 阅读建议:建议读者结合提供的Matlab代码进行实践操作,重点关注数据归一化、CNN特征提取层设计、BiLSTM时序建模及多步预测策略的实现细节,同时可尝试引入更多外部变量或优化网络结构以进一步提升预测性能。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值