Ilya宣判:大模型预训练即将终结!

作者 | 量子位  编辑 | 极市平台

点击下方卡片,关注“自动驾驶之心”公众号

戳我-> 领取自动驾驶近15个方向学习路线

>>点击进入→自动驾驶之心大语言模型技术交流群

本文只做学术分享,如有侵权,联系删文

导读

 

Pre-training as we know it will end. 

继李飞飞、Bengio、何恺明之后,在刚刚的NeurIPS 2024中,Ilya Sutskever最新演讲也来了。虽然时长仅有15分钟左右,但内容依旧看头十足。例如这一句:

Pre-training as we know it will end.
我们所熟知的预训练即将终结。

43a6d0fa6cd2312f0fd045e3fb4ca07e.png

而之于未来,Ilya还预测道:

what comes next is superintelligence: agentic, reasons, understands and is self aware.
接下来将是超级智能:代理、推理、理解和自我意识。

那么为何会有如此?我们一起来看看完整演讲。

回顾十年技术发展

Ilya先是用一张十年前的PPT截图开启了这次演讲,那时候深度学习还处于探索阶段。

8558d957ebc6234bf05974ada3cb1e7c.png

在2014年的蒙特利尔,他和团队(还有Oriol Vinyals和Quoc Le)首次提出了如今成为AI领域基石的深度学习理念。

Ilya展示了当时的一张PPT,揭示了他和团队的核心工作:自回归模型大型神经网络大数据集的结合。

a1bc4951b425fd4ce949711c1013227c.png

在十年前,这些元素并不被广泛看作成功的保证,而今天,它们已经成为人工智能领域最重要的基础。

例如在谈到深度学习假设时,Ilya强调了一个重要观点:

如果有一个10层的大型神经网络,它就能在一秒钟内完成人类能做的任何事情。

他解释说,深度学习的核心假设是人工神经元与生物神经元的相似性。

基于这一假设,如果人类能够在0.1秒钟内完成某项任务,那么同样的任务,一个训练良好的10层神经网络也能完成。

这一假设推动了深度学习的研究,并最终实现了当时看似大胆的目标。

edc2814c68b5616890892fd17b6576e3.png

Ilya还介绍了自回归模型的核心思想:通过训练模型预测序列中的下一个token,当模型预测得足够准确时,它就能捕捉到整个序列的正确分布。

这一思想为后来的语言模型奠定了基础,特别是在自然语言处理领域的应用。

7b9d7e9938331b594a6108eb1e010714.png

当然除了“押对宝”的技术之外,也有“押错”的。

LSTM(长短期记忆网络)就是其中之一。

Ilya提到LSTM是深度学习研究者在Transformer之前的主要技术之一。

尽管LSTM在当时为神经网络提供了强大的能力,但它的复杂性和局限性也显而易见。

efe2cd032027ef3a7b0cb2fd864fab51.png

另一个便是并行化(parallelization)。

尽管现在我们知道pipeline并不是一个好主意,但当时他们通过在每个GPU上运行一层网络,实现了3.5倍的速度提升。

f575975fdd17febea2fceec989138541.png

Ilya认为,规模假设(scaling hypothesis)是深度学习成功的关键。

这一假设表明,如果你有一个非常大的数据集,并训练一个足够大的神经网络,那么成功几乎是可以预见的。

这个观点已经成为今天深度学习领域的核心法则。

f18b2695edbede1c6f1d9b6f24982091.png

Ilya进一步阐述了连接主义的思想,认为人工神经元与生物神经元之间的相似性给了我们信心,认为即使不完全模仿人脑的结构,巨大的神经网络也能完成与人类相似的任务。

151525880c9f63c22cf67bc84d5ecbb7.png

预训练时代即将结束

基于上述技术的发展,也让我们迎来了预训练的时代。

预训练是推动所有进步的动力,包括大型神经网络和大规模数据集。

08e24786f5cafdc37442da216a36894d.png

但Ilya接下来预测说:

虽然计算能力在不断增长,硬件和算法的进步使得神经网络的训练效率得到了提升,但数据的增长却已接近瓶颈。

他认为,数据是AI的化石燃料,随着全球数据的限制,未来人工智能将面临数据瓶颈。

虽然当前我们仍然可以使用现有数据进行有效训练,但Ilya认为这一增长趋势终将放缓,预训练的时代也会逐步结束

7af4a385a07637ae44be849e762653c5.png

超级智能将是未来

在谈到未来的发展方向时,Ilya提到了“Agent”和“合成数据”的概念。

827b964c9d24a08dd708a810dbd6cb5e.png

许多专家都在讨论这些话题,认为Agent系统和合成数据将是突破预训练瓶颈的关键。

Agent系统指的是能够自主推理和决策的人工智能,而合成数据则可以通过模拟环境创造新的数据,弥补现实世界数据的不足。

Ilya还引用了一个生物学上的例子,展示了哺乳动物身体与大脑大小的关系,暗示不同生物可能通过不同的“规模法则”进化出不同的智能表现。

这一思想为深度学习领域的进一步扩展提供了启示,表明人工智能也许可以通过不同的方式突破目前的规模限制。

27919d0ec5740b851715001eedad6f0e.png

Ilya最后谈到了超级智能的前景。他指出,虽然当前的语言模型和AI系统

在某些任务上表现出超人类的能力,但它们在推理时仍显得不稳定和不可预测。

推理越多,系统变得越不可预测,这一点在一些复杂任务中表现得尤为突出。

他还提到:

目前的AI系统还不能真正理解和推理,虽然它们能模拟人类的直觉,但未来的AI将会在推理和决策方面展现出更加不可预测的能力。

Ilya进一步推测,未来的AI将不仅仅是执行任务的工具,而会发展成“Agent”,能够自主进行推理和决策,甚至

可能具备某种形式的自我意识。这将是一个质的飞跃,AI将不再是人类的延伸,而是一个具有独立智能的存在。

参考链接:https://x.com/vincentweisser/status/1867719020444889118

① 2025中国国际新能源技术展会

自动驾驶之心联合主办中国国际新能源汽车技术、零部件及服务展会。展会将于2025年2月21日至24日在北京新国展二期举行,展览面积达到2万平方米,预计吸引来自世界各地的400多家参展商和2万名专业观众。作为新能源汽车领域的专业展,它将全面展示新能源汽车行业的最新成果和发展趋势,同期围绕个各关键板块举办论坛,欢迎报名参加。

fdfbe7db90b53cbdbdb896ce38a9e4d9.jpeg

② 国内首个自动驾驶学习社区

『自动驾驶之心知识星球』近4000人的交流社区,已得到大多数自动驾驶公司的认可!涉及30+自动驾驶技术栈学习路线,从0到一带你入门自动驾驶感知端到端自动驾驶世界模型仿真闭环2D/3D检测、语义分割、车道线、BEV感知、Occupancy、多传感器融合、多传感器标定、目标跟踪)、自动驾驶定位建图SLAM、高精地图、局部在线地图)、自动驾驶规划控制/轨迹预测等领域技术方案大模型,更有行业动态和岗位发布!欢迎扫描加入

e3261ba07b9c0e4181488500a3308385.png

 ③全网独家视频课程

端到端自动驾驶、仿真测试、自动驾驶C++、BEV感知、BEV模型部署、BEV目标跟踪、毫米波雷达视觉融合多传感器标定多传感器融合多模态3D目标检测车道线检测轨迹预测在线高精地图世界模型点云3D目标检测目标跟踪Occupancy、CUDA与TensorRT模型部署大模型与自动驾驶NeRF语义分割自动驾驶仿真、传感器部署、决策规划、轨迹预测等多个方向学习视频(扫码即可学习

dafb8a411e3b1a505078aff14b7cf381.png

网页端官网:www.zdjszx.com

④【自动驾驶之心】全平台矩阵

aee3d7cf247b0fab48f9d7748ba7361b.png

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值