池化层作用机理
我们以最简单的最常用的max pooling最大池化层为例,对池化层作用机理进行探究。其他池化层的作用机理也大致适用这一机理,在这里就不加入讨论。
图片和以下部分内容来自 CS231n
从上面左图可以看到,使用了pool操作其实就是降低图片的空间尺寸。右图使用一个 2 × 2的 池化核(filter),以2为步长(stride),对图片进行max pooling,那么会图片就会尺寸就会减小一半。需要注意,这里是因为 stride = 2,所以图片尺寸才会减少一半的。
CS231n又对池化进行了量化的阐述:
上图表示的意思就是:
- 给定一个图片的三个维度的尺寸, 即【Channel, Height, Width】,以及给定两个超参数池化核尺寸 【F × F】,池化步长【S】,就可以计算池化后的图片尺寸,见上图公式。
- 池化核这个filter是不需要保留参数的,不同于conv filter, 每一个pooling filter就是一个固定的函数,比如max pooling,就是取这个filter覆盖区域像素的最大值而已。所以我们在计算卷积层数的时候,不计入池化层。
- 对于pooling 层,我们通常不需要使用 padding。这是由于采用pooling通常是为了减少一半的图片尺寸,我们使用 kernel