网络压缩(model compression) A Deep Neural Network Compression Pipeline: Pruning, Quantization, Huffman

本文介绍了一种深度神经网络压缩流程,包括权重裁剪、量化和霍夫曼编码。通过仅保留重要连接来减少网络参数数量,并采用CSR/CSC格式进行高效存储。量化进一步减少了表示每个权重所需的位数,而霍夫曼编码则实现了无损数据压缩。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

 

论文《A Deep Neural Network Compression Pipeline: Pruning, Quantization, Huffman Encoding》

Pruning

  • by learning only the important connections.
  1. all connections with weights below a threshold are removed from the network.

  2. retrain the network to learn the final weights for the remaining sparse connections.

  3. store by compressed sparse row(CSR) or compressed sparse column(CSC) format
    • requires 2nnz + n + 1, nnz is the number of non-zero elements and n is the number of columns or rows.

    • store the index difference instead of the absolute position

  4. by 9× and 13× for AlexNet and VGG-16 model.

Quantization

  • quantize the weights to enforce weight sharing

Network quantization, further compresses the pruned network by reducing the number of bits required to represent each weight.

  1. Weight Sharing
    • k-means clustering
  2. Initialization of Shared Weights
    • Forgy(random).
      Since there are two peaks in the bimodal distribution, Forgy method tend to concentrate around those two peaks.
    • Density-based.
      This method makes the centroids denser around the two peaks, but more scatted than the Forgy method.
    • Linear initialization.
      Linear initialization linearly spaces the centroids between the [min, max] of the original weights.
  3. Feed-forward and Back-propagation

Huffman coding

  • Huffman coding

    Huffman code is a type of optimal prefix code that is commonly used for loss-less data compression.

总结

这篇论文的想法是比较好的,但是因为裁剪部分权值,会导致filter矩阵的稀疏性,所以需要特别的稀疏矩阵计算库才能支持以上的操作。

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值