利用魔塔社区GPU微调Yi-1.5-6B-Chat

部署运行你感兴趣的模型镜像

你只需要有浏览器就可以完成。

本次微调的大模型是零一万物的 Yi 开源大语言模型,当然微调其他大模型的过程和原理也有差不多。

这里说明一下,阿里魔塔社区对于新用户提供了几十小时的免费GPU资源进行使用,正好可以来薅一波羊毛,学习一下大模型的微调

话不多说,直接开始。

1. 账号和环境准备

首先你需要注册和登录魔搭的账号:https://modelscope.cn/home

注册完成后,登录这个模型网址:

https://www.modelscope.cn/models/01ai/Yi-1.5-6B**.**

然后按照下面的箭头操作。

选择完方式二:GPU环境后,点击“启动”。

启动大概需要2分钟,等GPU环境启动好以后点击"查看NoteBook"进入。

魔塔社区内置了JupyterLab的功能,你进入之后,可以找到 Notebook 标签,新建一个Notebook(当然你在terminal 里执行也没问题)。

如下箭头所示,点击即可创建一个新的 Notebook 页面。

增添一个代码块,并且执行以下命令(点击左侧的运行按钮运行该代码块,下同,这一步是安装依赖库)。

!pip3 install --upgrade pip
!pip3 install bitsandbytes>=0.39.0

拉取 LLaMA-Factory,过程大约需要几分钟

!git clone --depth 1 https://github.com/hiyouga/LLaMA-Factory.git

接下来需要去 Launcher > Terminal 执行(按照图片剪头指示操作)。

安装依赖的软件,这步需要的时间比较长。

# 下面两行命令在刚启动的Terminal中执行
cd LLaMA-Factory
pip3 install -e ".[torch,metrics]"

等以上所有步骤完成后,再进行下面的操作。

2. 下载模型

零一万物的 Yi 开源大语言模型的权重可以在HuggingFace和ModelScope上找到,这里我选择从ModelScope上下载。

零一万物的所有开源模型链接在这里:

https://www.modelscope.cn/organization/01ai/

模型下载需要一定的时间,这里选择了最小的Yi-1.5-6B-chat模型进行实验。

模型的说明在这里:

https://www.modelscope.cn/models/01ai/Yi-1.5-6B-Chat/summary

Yi-1.5-6B-chat模型大小大约12G,下载大约需要10分钟(取决于网速)。

接下来,你通过下面的命令就可以在 notebook 里执行下载(在 terminal也一样,如果需要在terminal执行需要去掉前面的!)。

!git clone https://www.modelscope.cn/01ai/Yi-1.5-6B-Chat.git

这一步,耐心等待下载完成即可。

3. 微调Yi模型实战

等以上所有步骤完成后,准备工作就做好了,现在可以开始准备微调了。

开源社区有许多非常优秀的专门用于微调代码库具体的你可以参考这里:

https://github.com/01-ai/Yi-1.5?tab=readme-ov-file#fine-tuning

站在巨人的肩膀上开始这次实战,这里选择llama_factory。

LLaMA Factory是一款开源低代码大模型微调框架,集成了业界广泛使用的微调技术。llama_factory 的介绍可以在这里查看:

4. 开始微调

创建微调训练相关的配置文件
在左侧的文件列表,Llama-Factory的文件夹里,打开examples\train_qlora(注意不是 train_lora)下提供的llama3_lora_sft_awq.yaml,复制一份并重命名为yi_lora_sft_bitsandbytes.yaml。

这个文件里面写着和微调相关的关键参数。

打开这个文件,将第一行model_name_or_path更改为你下载模型的位置。

### model
model_name_or_path: <你下载的模型位置,不要带括号,比如我写了../Yi-1.5-6B-Chat>

同样修改其他行的内容,下面是我的修改,你可以逐行对比一下,有不一致或缺少的就添加一下。

从上面的配置文件中可以看到,本次微调的数据集是 identity。

那这个文件里面写着什么呢?

你可以打开这个文件看一下:https://github.com/hiyouga/LLaMA-Factory/blob/main/data/identity.json。

微调数据集是“自我认知”,也就是说当你问模型“你好你是谁”的时候,模型会告诉你我叫name由author开发。

如果你把数据集更改成你自己的名字,那你就可以微调一个属于你自己的大模型。

这一步,你可以将 identity.json 中的 {{name}} 字段替换为你的名字来微调一个属于自己的大模型。

保存刚才对于 yi_lora_sft_bitsandbytes.yaml 文件的更改,回到终端terminal。

在 LLaMA-Factory 目录下,输入以下命令启动微调脚本(大概需要10分钟)

llamafactory-cli train examples/train_qlora/yi_lora_sft_bitsandbytes.yaml

看到进度条就是开始微调了。

运行过程大概需要10分钟,当你看到下面这个界面的时候,微调过程就结束了。

5. 推理测试

微调后的模型有什么不同的地方呢?

这里加载微调后模型进行推理,测试微调前后变化。

参考Llama-Factory文件夹中,examples\inference下提供的llama3_lora_sft.yaml,复制一份,并重命名为 yi_lora_sft.yaml

将内容更改为,并且保存*(一定记得保存)*

回到刚刚结束微调的终端Terminal,运行下面的推理命令(同样在Llama-Factory目录下运行)。

llamafactory-cli chat examples/inference/yi_lora_sft.yaml

稍微等待一下模型加载,然后就可以聊天了。

可以看到模型的自我身份认知被成功的更改了。

自我身份认知更改成为数据集规定的样子了,同时也保持了通用对话能力。

那么,和没有经过微调之前的模型对比有什么差别呢?

重复上面的步骤,将llama3.yaml复制并重命名为yi.yaml,将内容更改为以下的内容,并保存(一定记得保存)。

model_name_or_path: ../Yi-1.5-6B-Chat
template: chatml

回到终端Terminal,运行下面的推理命令:

llamafactory-cli chat examples/inference/yi.yaml

可以提问和刚才同样的问题,看到模型的原始回答。

基于本实验,你就完成了一个简单的微调,完整的走了一遍模型的微调过程,是不是还挺简单的?

您可能感兴趣的与本文相关的镜像

Llama Factory

Llama Factory

模型微调
LLama-Factory

LLaMA Factory 是一个简单易用且高效的大型语言模型(Large Language Model)训练与微调平台。通过 LLaMA Factory,可以在无需编写任何代码的前提下,在本地完成上百种预训练模型的微调

内容概要:本文介绍了一个关于超声谐波成像中幅度调制聚焦超声所引起全场位移和应变的分析模型,并提供了基于Matlab的代码实现。该模型旨在精确模拟和分析在超声谐波成像过程中,由于幅度调制聚焦超声作用于生物组织时产生的力学效应,包括全场的位移与应变分布,从而为医学成像和治疗提供理论支持和技术超声谐波成像中幅度调制聚焦超声引起的全场位移和应变的分析模型(Matlab代码实现)手段。文中详细阐述了模型构建的物理基础、数学推导过程以及Matlab仿真流程,具有较强的理论深度与工程应用价值。; 适合人群:具备一定声学、生物医学工程或力学背景,熟悉Matlab编程,从事医学成像、超声技术或相关领域研究的研究生、科研人员及工程技术人员。; 使用场景及目标:①用于超声弹性成像中的力学建模与仿真分析;②支持高强度聚焦超声(HIFU)治疗中的组织响应预测;③作为教学案例帮助理解超声与组织相互作用的物理机制;④为相关科研项目提供可复用的Matlab代码框架。; 阅读建议:建议读者结合超声物理和连续介质力学基础知识进行学习,重点关注模型假设、偏微分方程的数值求解方法及Matlab实现细节,建议动手运行并修改代码以加深理解,同时可拓展应用于其他超声成像或治疗场景的仿真研究。
### 关于PAT Basic Level Practice的测试点及题目解析 #### 题目难度分级 PAT(Programming Ability Test)是由浙江大学举办的计算机程序设计能力考试,分为不同级别。其中乙级即Basic Level主要面向初学者,考察基本编程技能[^1]。 #### 测试点特点 对于PAT Basic Level中的某些特定题目而言,其测试点设置较为严格。例如,在处理字符串匹配类问题时,需要注意算法逻辑中何时应当终止循环以防止不必要的重复计算;而在涉及数值运算的问题里,则可能因为边界条件而增加复杂度[^3]。 #### 编程语言的选择影响 值得注意的是,尽管大部分简单题目可以作为学习某种新语言的良好实践材料,但在实际操作过程中可能会遇到由于所选语言特性而导致难以通过全部测试点的情况。比如Java在面对部分效率敏感型试题时表现不佳,这可能是由于该语言本身的执行速度相对较慢以及内存管理方式等因素造成的。因此有时不得不转而采用其他更适合解决此类问题的语言版本来完成解答[^2]。 ```cpp #include<bits/stdc++.h> using namespace std; int a[100000]; int c=1; void getPrime(){ int flag=0; for(int i=2;i<105000;i++){ flag=1; for(int j=2;j<=sqrt(i);j++){ if(i%j==0){ flag=0; break; } } if(flag==1) a[c++]=i; } } int main(){ int m,n,i,t=1; scanf("%d %d",&m,&n); getPrime(); for(i=m;i<=n;i++){ if(t%10==1){ printf("%d",a[i]); t++; }else{ printf(" %d",a[i]); t++; } if((t-1)%10==0) printf("\n"); } return 0; } ``` 上述C++代码展示了如何实现一个简单的质数打印功能,并且针对输出格式进行了特殊处理以满足特定要求。这段代码很好地体现了编写高效解决方案的重要性,尤其是在应对像PAT这样的在线评测系统时[^4]。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值