本题要求实现给定二叉搜索树的5种常用操作。
函数接口定义:
BinTree Insert( BinTree BST, ElementType X );
BinTree Delete( BinTree BST, ElementType X );
Position Find( BinTree BST, ElementType X );
Position FindMin( BinTree BST );
Position FindMax( BinTree BST );
其中BinTree结构定义如下:
typedef struct TNode *Position;
typedef Position BinTree;
struct TNode{
ElementType Data;
BinTree Left;
BinTree Right;
};
- 函数
Insert将X插入二叉搜索树BST并返回结果树的根结点指针; - 函数
Delete将X从二叉搜索树BST中删除,并返回结果树的根结点指针;如果X不在树中,则打印一行Not Found并返回原树的根结点指针; - 函数
Find在二叉搜索树BST中找到X,返回该结点的指针;如果找不到则返回空指针; - 函数
FindMin返回二叉搜索树BST中最小元结点的指针; - 函数
FindMax返回二叉搜索树BST中最大元结点的指针。
裁判测试程序样例:
#include <stdio.h>
#include <stdlib.h>
typedef int ElementType;
typedef struct TNode *Position;
typedef Position BinTree;
struct TNode{
ElementType Data;
BinTree Left;
BinTree Right;
};
void PreorderTraversal( BinTree BT ); /* 先序遍历,由裁判实现,细节不表 */
void InorderTraversal( BinTree BT ); /* 中序遍历,由裁判实现,细节不表 */
BinTree Insert( BinTree BST, ElementType X );
BinTree Delete( BinTree BST, ElementType X );
Position Find( BinTree BST, ElementType X );
Position FindMin( BinTree BST );
Position FindMax( BinTree BST );
int main()
{
BinTree BST, MinP, MaxP, Tmp;
ElementType X;
int N, i;
BST = NULL;
scanf("%d", &N);
for ( i=0; i<N; i++ ) {
scanf("%d", &X);
BST = Insert(BST, X);
}
printf("Preorder:"); PreorderTraversal(BST); printf("\n");
MinP = FindMin(BST);
MaxP = FindMax(BST);
scanf("%d", &N);
for( i=0; i<N; i++ ) {
scanf("%d", &X);
Tmp = Find(BST, X);
if (Tmp == NULL) printf("%d is not found\n", X);
else {
printf("%d is found\n", Tmp->Data);
if (Tmp==MinP) printf("%d is the smallest key\n", Tmp->Data);
if (Tmp==MaxP) printf("%d is the largest key\n", Tmp->Data);
}
}
scanf("%d", &N);
for( i=0; i<N; i++ ) {
scanf("%d", &X);
BST = Delete(BST, X);
}
printf("Inorder:"); InorderTraversal(BST); printf("\n");
return 0;
}
/* 你的代码将被嵌在这里 */
BinTree Insert( BinTree BST, ElementType X )
{
if(!BST){
BST = malloc(sizeof(struct TNode));
BST->Left = BST->Right = NULL;
BST->Data = X;
}else{
if(X > BST->Data)
BST->Right = Insert(BST->Right, X);
else if(X < BST->Data)
BST->Left = Insert(BST->Left, X);
}
return BST;
}
BinTree Delete( BinTree BST, ElementType X )
{
Position tmp;
if(!BST){
printf("Not Found\n");
return NULL;
}
if(X > BST->Data) BST->Right = Delete(BST->Right, X);
else if(X < BST->Data) BST->Left = Delete(BST->Left, X);
else{
//被删除结点有左右两个子结点
if(BST->Left && BST->Right){
tmp = FindMin(BST->Right);
BST->Data = tmp->Data;
BST->Right = Delete(BST->Right, BST->Data);
}else{
tmp = BST;
if(!BST->Left) BST = BST->Right;
else if(!BST->Right) BST = BST->Left;
free(tmp);
}
}
return BST;
}
Position Find( BinTree BST, ElementType X )
{
if(!BST) return NULL;
if(X > BST->Data) return Find(BST->Right, X);
else if(X < BST->Data) return Find(BST->Left, X);
else return BST;
}
Position FindMin( BinTree BST )
{
if(!BST) return NULL;
while(BST->Left){
BST = BST->Left;
}
return BST;
}
Position FindMax( BinTree BST )
{
if(!BST) return NULL;
while(BST->Right){
BST = BST->Right;
}
return BST;
}
这篇博客介绍了如何实现二叉搜索树的插入、删除、查找、找到最小元素和最大元素这五种常见操作。提供了函数接口定义,并且包含裁判测试程序的样例。
447

被折叠的 条评论
为什么被折叠?



