一. 梯度下降算法
通过计算损失函数关于模型参数的梯度,然后沿着梯度的反方向(即最陡峭的下降方向)更新参数。这样,每次迭代都会使损失函数值减小,从而逐渐接近损失函数的最小值。
具体来说,梯度下降算法的步骤通常如下:
初始化参数:随机初始化模型的参数(例如权重和偏置)。
计算梯度:使用当前参数计算损失函数关于这些参数的梯度。梯度是一个向量,指示了损失函数在每个参数上的局部变化率。
更新参数:将每个参数沿着梯度的反方向移动一小步,步长由学习率控制。学习率是一个超参数,决定了参数更新的幅度。
重复迭代:重复步骤2和3,直到满足某个停止条件(例如达到最大迭代次数、损失函数值足够小或梯度足够小)。
二. 常见梯度下降算法
1. 随机梯度下降
在每次迭代中只使用一个样本来计算梯度并更新参数。这种方法计算量小,收敛速度快,但可能会引入噪声,导致在最小值附近震荡。
2. 批量梯度下降
在每次迭代中使用整个数据集来计算梯度并更新参数。这种方法计算量大,但通常能保证收敛到全局最小值(对于凸损失函数)
3. 小批量梯度下降
小批量梯度下降是批量梯度下降和随机梯度下降的结合,每次迭代使用一个小批量的样本来计算梯度,并更新模型参数。这种方法在计算效率和收敛稳定性之间取得了平衡,是实际应用中最常用的梯度下降算法之一。
三. 动量(Momentum)方法
每一时间步上梯度调整的步长(step-size)。当接近最优值时梯度会比较小,由于学习率固定,普通的梯度下降法的收敛速度会变慢,有时甚至陷入局部最优。这时如果考虑历史梯度,将会引导参数朝着最优值更快收敛,这就是动量算法的基本思想。
四. AdaGrad方法
Adagrad(Adaptive Gradient Algorithm)是一种自适应学习率的优化算法,它通过将学习率分别应用于每个参数的梯度的平方来调整学习率,从而使得稀疏梯度的参数得到更大的更新,稠密梯度的参数得到较小的更新。Adagrad算法通常用于处理稀疏数据集和非凸优化问题。
五. Adam方法
Adam(Adaptive Moment Estimation)是一种自适应学习率的优化算法,结合了动量梯度下降和自适应学习率的优点。它通过计算梯度的一阶矩估计和二阶矩估计来自适应地调整学习率,从而在不同维度上具有不同的学习率。Adam算法在实践中表现良好,被广泛应用于深度学习中。
2万+

被折叠的 条评论
为什么被折叠?



