文章目录
前置知识
Module是指模块,Function模块下的函数,BasicBlock函数下的基本块,Instruction 基本块下的IR指令
Flattening::flatten(Function *f)
for (Function::iterator i = f->begin(); i != f->end(); ++i) {
BasicBlock *tmp = &*i;
origBB.push_back(tmp);
BasicBlock *bb = &*i;
if (isa<InvokeInst>(bb->getTerminator())) {
return false;
}
}
把函数分成很多个基本块,并且push到vector类型的 origBB中。
判断里面基本块是否大于1,不大于1的话就没有意义去进行混淆:
if (origBB.size() <= 1) {
return false;
}
需要把vertor里面的第一个基本块即入口基本块单独拿出来进行处理:对入口基本块进行判断,如果是无条件跳转则不进行任何处理,否则需要找到最后一条指令,将整个if结构给split,split之后两个块之间会自动添加跳转指令,然后就可以把原来的split后的if结构给它扔进要处理的基本块列表。
origBB.erase(origBB.begin());
// Get a pointer on the first BB
Function::iterator tmp = f->begin(); //++tmp;
BasicBlock *insert = &*tmp;
// If main begin with an if
BranchInst *br = NULL;
if (isa<BranchInst>(insert->getTerminator())) {
br = cast<BranchInst>(insert->getTerminator());
}
if ((br != NULL && br->isConditional()) ||
insert->getTerminator()->getNumSuccessors() > 1) {
BasicBlock::iterator i = insert->end();
--i;
if (insert->size() > 1) {
--i;
}
BasicBlock *tmpBB = insert->splitBasicBlock(i, "first");
origBB.insert(origBB.begin(), tmpBB);
}
如果是条件跳转的话这里是把上面自动添加那个跳转指令给删除,如果不是的话,那么也是需要把它删除,因为跳转点目标还不能确定:
// Remove jump
insert->getTerminator()->eraseFromParent();
源代码
%retval = alloca i32, align 4
%argc.addr = alloca i32, align 4
%argv.addr = alloca i8**, align 8
%a = alloca i32, align 4
store i32 0, i32* %retval, align 4
store i32 %argc, i32* %argc.addr, align 4
store i8** %argv, i8*** %argv.addr, align 8
%0 = load i8**, i8*** %argv.addr, align 8
%arrayidx = getelementptr inbounds i8*, i8** %0, i64 1
%1 = load i8*, i8** %arrayidx, align 8
%call = call i32 @atoi(i8* %1) #3
store i32 %call, i32* %a, align 4
%2 = load i32, i32* %a, align 4
br label %NodeBlock8
目前代码
entry:
%.reg2mem = alloca i32
%retval = alloca i32, align 4
%argc.addr = alloca i32, align 4
%argv.addr = alloca i8**, align 8
%a = alloca i32, align 4
store i32 0, i32* %retval, align 4
store i32 %argc, i32* %argc.addr, align 4
store i8** %argv, i8*** %argv.addr, align 8
%0 = load i8**, i8*** %argv.addr, align 8
%arrayidx = getelementptr inbounds i8*, i8** %0, i64 1
%1 = load i8*, i8** %arrayidx, align 8
%call = call i32 @atoi(i8* %1) #3
store i32 %call, i32* %a, align 4
%2 = load i32, i32* %a, align 4
store i32 %2, i32* %.reg2mem
%switchVar = alloca i32
创建一个switchvar变量,然后去获取一个随机整数创建store指令塞给switchvar中
switchVar =
new AllocaInst(Type::getInt32Ty(f->getContext()), 0, "switchVar", insert);
new StoreInst(
ConstantInt::get(Type::getInt32Ty(f->getContext()),
llvm::cryptoutils->scramble32(0, scrambling_key)),
switchVar, insert);
也就是在switchvar添了如下这一行:
store i32 157301900, i32* %switchVar
创建switch
创建两个block,其它的基本块插入它们之间
loopEntry = BasicBlock::Create(f->getContext(), "loopEntry", f, insert);
loopEnd = BasicBlock::Create(f->getContext(), "loopEnd", f, insert);
如下:
loopEntry:
loopEnd:
目标基本块里面啥内容也没有。
在loopEntry里面新建一个load指令,并且把switchVar
load = new LoadInst(switchVar, "switchVar", loopEntry);
目前loopentry指令如下:
loopEntry: ; preds = %entry, %loopEnd
%switchVar10 = load i32, i32* %switchVar
把insert插入到loopEntry之前,这里的insert就是entry基本块,再创建两个跳转指令,从insert(即第一个基本块)跳转到loopEntry;从loopend跳转到loopEntry
// Move first BB on top
insert->moveBefore(loopEntry);
BranchInst::Create(loopEntry, insert);
// loopEnd jump to loopEntry
BranchInst::Create(loopEntry, loopEnd);
这里结束后,entry模块就完整了,如下:
entry:
%.reg2mem = alloca i32
%retval = alloca i32, align 4
%argc.addr = alloca i32, align 4
%argv.addr = alloca i8**, align 8
%a = alloca i32, align 4
store i32 0, i32* %retval, align 4
store i32 %argc, i32* %argc.addr, align 4
store i8** %argv, i8*** %argv.addr, align 8
%0 = load i8**, i8*** %argv.addr, align 8
%arrayidx = getelementptr inbounds i8*, i8** %0, i64 1
%1 = load i8*, i8** %arrayidx, align 8
%call = call i32 @atoi(i8* %1) #3
store i32 %call, i32* %a, align 4
%2 = load i32, i32* %a, align 4
store i32 %2, i32* %.reg2mem
%switchVar = alloca i32
store i32 157301900, i32* %switchVar
br label %loopEntry
而loopend模块也有了一条指令(其实也是完整了):
loopEnd:
br label %loopEntry
紧接着创建一个基本块,然后在基本块里面创建一个跳转指令,从switchDefault跳转到loopend中
BasicBlock *swDefault =
BasicBlock::Create(f->getContext(), "switchDefault", f, loopEnd);
BranchInst::Create(loopEnd, swDefault);
多了一个switchDefault基本块,指令如下:
switchDefault: ; preds = %loopEntry
br label %loopEnd
创建一个switch指令,位置是在loopentry基本块下,且创建了0个case,然后设置了条件为load,就上面的load。
switchI = SwitchInst::Create(&*f->begin(), swDefault, 0, loopEntry);
switchI->setCondition(load);
把entry最后一行跳转指令删除后再创建了一个跳转指令,从entry跳转到loopentry
f->begin()->getTerminator()->eraseFromParent();
BranchInst::Create(loopEntry, &*f->begin());
for (std::vector<BasicBlock *>::iterator b = origBB.begin();
b != origBB.end(); ++b) {
BasicBlock *i = *b;
ConstantInt *numCase = NULL;
// Move the BB inside the switch (only visual, no code logic)
i->moveBefore(loopEnd);
// Add case to switch
numCase = cast<ConstantInt>(ConstantInt::get(
switchI->getCondition()->getType(),
llvm::cryptoutils->scramble32(switchI->getNumCases(), scrambling_key)));
switchI->addCase(numCase, i);
}
目前代码:
entry:
%.reg2mem = alloca i32
%retval = alloca i32, align 4
%argc.addr = alloca i32, align 4
%argv.addr = alloca i8**, align 8
%a = alloca i32, align 4
store i32 0, i32* %retval, align 4
store i32 %argc, i32* %argc.addr, align 4
store i8** %argv, i8*** %argv.addr, align 8
%0 = load i8**, i8*** %argv.addr, align 8
%arrayidx = getelementptr inbounds i8*, i8** %0, i64 1
%1 = load i8*, i8** %arrayidx, align 8
%call = call i32 @atoi(i8* %1) #3
store i32 %call, i32* %a, align 4
%2 = load i32, i32* %a, align 4
store i32 %2, i32* %.reg2mem
%switchVar = alloca i32
store i32 157301900, i32* %switchVar
br label %loopEntry
loopEntry:
%switchVar10 = load i32, i32* %switchVar
switch i32 %switchVar10, label %switchDefault [
]
switchDefault: ; preds = %loopEntry
br label %loopEnd
loopEnd:
br label %loopEntry
创建case
for (std::vector<BasicBlock *>::iterator b = origBB.begin();
b != origBB.end(); ++b) {
BasicBlock *i = *b;
ConstantInt *numCase = NULL;
// Move the BB inside the switch (only visual, no code logic)
i->moveBefore(loopEnd);
// Add case to switch
numCase = cast<ConstantInt>(ConstantInt::get(
switchI->getCondition()->getType(),
llvm::cryptoutils->scramble32(switchI->getNumCases(), scrambling_key)));
switchI->addCase(numCase, i);
}
这里的i就是指剩下的那些case分支代码基本块,i->moveBefore(loopEnd),把某个代码基本块置于loopend之前。比如某个基本块是这样:
NodeBlock8: ; preds = %entry
%Pivot9 = icmp slt i32 %2, 2
br i1 %Pivot9, label %LeafBlock, label %NodeBlock
然后下面的这些代码就是创建一个numcase,就是case分支里面的case值,这个值它是随机生成的,种子的话是Entry.cpp里面的那个AesSeed值,如果确定AesSeed的话,那么这里随机生成的case每次都是固定的。
switchI->addCase(numCase, i);紧接着在switch里面增加一个case值,跳转到NodeBlock8里面。
目前switch执行完一次后,loopentry基本bolck块如下:
loopEntry:
%switchVar10 = load i32, i32* %switchVar
switch i32 %switchVar10, label %switchDefault [
i32 157301900, label %NodeBlock8
]
当循环执行结束后:
目前代码
entry:
%retval = alloca i32, align 4
%argc.addr = alloca i32, align 4
%argv.addr = alloca i8**, align 8
%a = alloca i32, align 4
store i32 0, i32* %retval, align 4
store i32 %argc, i32* %argc.addr, align 4
store i8** %argv, i8*** %argv.addr, align 8
%0 = load i8**, i8*** %argv.addr, align 8
%arrayidx = getelementptr inbounds i8*, i8** %0, i64 1
%1 = load i8*, i8** %arrayidx, align 8
%call = call i32 @atoi(i8* %1) #3
store i32 %call, i32* %a, align 4
%2 = load i32, i32* %a, align 4
br label %NodeBlock8
NodeBlock8: ; preds = %entry
%Pivot9 = icmp slt i32 %2, 2
br i1 %Pivot9, label %LeafBlock, label %NodeBlock
NodeBlock: ; preds = %NodeBlock8
%Pivot = icmp slt i32 %2, 3
br i1 %Pivot, label %sw.bb2, label %LeafBlock6
LeafBlock6: ; preds = %NodeBlock
%SwitchLeaf7 = icmp eq i32 %2, 3
br i1 %SwitchLeaf7, label %sw.bb4, label %NewDefault
LeafBlock: ; preds = %NodeBlock8
%SwitchLeaf = icmp eq i32 %2, 1
br i1 %SwitchLeaf, label %sw.bb, label %NewDefault
sw.bb: ;

本文详细介绍了在LLVMIR层面上如何进行控制流平坦化(ControlFlowFlattening)以及函数合并,主要涉及到的基本块、函数和指令操作,包括创建switch结构、处理不同类型的跳转指令,以及如何通过模块Pass实现函数合并,以增强代码的混淆性。
最低0.47元/天 解锁文章

被折叠的 条评论
为什么被折叠?



