call bind apply 三这都是改变函数体内部this的指向

本文详细解析了JavaScript中this指向的问题,通过实例展示了call、bind和apply三个方法如何改变函数内部this的指向。同时,介绍了小程序中实现节流函数的方法,用于控制函数调用频率,避免过度触发。

call bind apply
三这都是改变函数体内部this的指向,

const module = {
  x: 42,
  getX: function() {
    return this.x;
  }
};

const unboundGetX = module.getX;
console.log(unboundGetX()); // The function gets invoked at the global scope
// expected output: undefined

const boundGetX = unboundGetX.bind(module);
console.log(boundGetX());
// expected output: 42

bind()方法创建一个新的函数,在bind()被调用时,这个新函数的this被指定为bind()的第一个参数,而其余参数作为新函数的参数,供调用时使用。

返回一个原函数的拷贝,并拥有指定的 this 值和初始参数。

apply()方法条调用一个具有给定this值的函数,以及作为一个数组(或类似数组对象)提供的参数。
call()方法使用一个指定的this值和单独给出的一个或多个参数来调用函数
注意:call()方法的作用和 apply() 方法类似,区别就是call()方法接受的是参数列表,而apply()方法接受的是一个参数数组。

小程序中写一个节流函数。

//在 utils/throttle.js

const throttle = (fn, timeout = 1000) => {
  let t;
  return function(...args){
    const ctx = this;

    if(t){
      return;
    }
    t = setTimeout(() => {
      t = clearTimeout(t);
      fn.apply(ctx, [...args]);
    }, timeout);
  }
};

module.exports = {
  throttle
}

在小程序page下的js中使用

import { throttle } from "../../utils/throttle";
  updateInfo: throttle(function(){
    
  }),
源码地址: https://pan.quark.cn/s/a4b39357ea24 遗传算法 - 简书 遗传算法的理论是根据达尔文进化论而设计出来的算法: 人类是朝着好的方向(最优解)进化,进化过程中,会自动选择优良基因,淘汰劣等基因。 遗传算法(英语:genetic algorithm (GA) )是计算数学中用于解决最佳化的搜索算法,是进化算法的一种。 进化算法最初是借鉴了进化生物学中的一些现象而发展起来的,这些现象包括遗传、突变、自然选择、杂交等。 搜索算法的共同特征为: 首先组成一组候选解 依据某些适应性条件测算这些候选解的适应度 根据适应度保留某些候选解,放弃其他候选解 对保留的候选解进行某些操作,生成新的候选解 遗传算法流程 遗传算法的一般步骤 my_fitness函数 评估每条染色体所对应个体的适应度 升序排列适应度评估值,选出 前 parent_number 个 个体作为 待选 parent 种群(适应度函数的值越小越好) 从 待选 parent 种群 中随机选择 2 个个体作为父方母方。 抽取父母双方的染色体,进行交叉,产生 2 个子代。 (交叉概率) 对子代(parent + 生成的 child)的染色体进行变异。 (变异概率) 重复3,4,5步骤,直到新种群(parentnumber + childnumber)的产生。 循环以上步骤直至找到满意的解。 名词解释 交叉概率:两个个体进行交配的概率。 例如,交配概率为0.8,则80%的“夫妻”会生育后代。 变异概率:所有的基因中发生变异的占总体的比例。 GA函数 适应度函数 适应度函数由解决的问题决定。 举一个平方的例子。 简单的平方问题 求函数的最小值,其中每个变量的取值区间都是 [-1, ...
《基于STM32微控制器集成温湿度监测与显示功能的系统实现方案》 本方案提供了一套完整的嵌入式系统设计参考,实现了环境参数的实时采集、可视化呈现与异常状态提示。系统核心采用意法半导体公司生产的STM32系列32位微控制器作为主控单元,负责协调各外设模块的工作流程。 系统通过数字式温湿度复合传感器周期性获取环境参数,该传感器采用单总线通信协议,具有响应迅速、数据可靠的特点。采集到的数值信息通过两种途径进行处理:首先,数据被传输至有机发光二极管显示屏进行实时图形化显示,该显示屏支持高对比度输出,能够在不同光照条件下清晰呈现当前温度与湿度数值;其次,所有采集数据同时通过通用异步收发传输接口输出,可供上位机软件进行记录与分析。 当监测参数超出预设安全范围时,系统会启动声学警示装置,该装置可发出不同频率的提示音,以区分温度异常或湿度异常状态。所有功能模块的驱动代码均采用模块化设计原则编写,包含完整的硬件抽象层接口定义、传感器数据解析算法、显示缓冲区管理机制以及串口通信协议实现。 本参考实现重点阐述了多外设协同工作的时序控制策略、低功耗数据采集模式的应用方法,以及确保系统稳定性的错误处理机制。代码库中包含了详细的初始化配置流程、中断服务程序设计各功能模块的应用程序接口说明,为嵌入式环境监测系统的开发提供了可靠的技术实现范例。 资源来源于网络分享,仅用于学习交流使用,请勿用于商业,如有侵权请联系我删除!
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值