These are N cities in Spring country. Between each pair of cities there may be one transportation track or none. Now there is some cargo that should be delivered from one city to another. The transportation fee consists of two parts:
The cost of the transportation on the path between these cities, and
a certain tax which will be charged whenever any cargo passing through one city, except for the source and the destination cities.
You must write a program to find the route which has the minimum cost.
The cost of the transportation on the path between these cities, and
a certain tax which will be charged whenever any cargo passing through one city, except for the source and the destination cities.
You must write a program to find the route which has the minimum cost.
The data of path cost, city tax, source and destination cities are given in the input, which is of the form:
a11 a12 ... a1N
a21 a22 ... a2N
...............
aN1 aN2 ... aNN
b1 b2 ... bN
c d
e f
...
g h
where aij is the transport cost from city i to city j, aij = -1 indicates there is no direct path between city i and city j. bi represents the tax of passing through city i. And the cargo is to be delivered from city c to city d, city e to city f, ..., and g = h = -1. You must output the sequence of cities passed by and the total cost which is of the form:
Path: c-->c1-->......-->ck-->d
Total cost : ......
......
From e to f :
Path: e-->e1-->..........-->ek-->f
Total cost : ......
Note: if there are more minimal paths, output the lexically smallest one. Print a blank line after each test case.
5 0 3 22 -1 4 3 0 5 -1 -1 22 5 0 9 20 -1 -1 9 0 4 4 -1 20 4 0 5 17 8 3 1 1 3 3 5 2 4 -1 -1 0
From 1 to 3 : Path: 1-->5-->4-->3 Total cost : 21 From 3 to 5 : Path: 3-->4-->5 Total cost : 16 From 2 to 4 : Path: 2-->1-->5-->4 Total cost : 17
题意就不在这叙述了,就是一个floyd + 打印路径;
这题的输出有点诡异,交了三发PE。
具体代码如下:
#include <map> #include <set> #include <cmath> #include <queue> #include <string> #include <vector> #include <cstdio> #include <cstring> #include <iostream> #include <algorithm> #define inf 1<<30 #define eps 1e-10 #define maxn 0x3f3f3f3f #define zero(a) fabs(a)<eps #define Min(a,b) ((a)<(b)?(a):(b)) #define Max(a,b) ((a)>(b)?(a):(b)) #define pb(a) push_back(a) #define mem(a,b) memset(a,b,sizeof(a)) #define LL long long #define lson step<<1 #define rson step<<1|1 #define MOD 1000000009 #define sqr(a) ((a)*(a)) using namespace std; int e[1005][1005]; int p[1005][1005]; int a[1005]; void init(int n) { for(int i = 1; i <= n; i++) { for(int j = 1; j <= n; j++) { if(e[i][j] == -1) e[i][j] = maxn; } } } void floyd(int n) { for(int i = 1; i <= n; i++) { for(int j = 1; j <= n; j++) { p[i][j] = j; } } for(int k = 1; k <= n; k++) { for(int i = 1; i <= n; i++) { for(int j = 1; j <= n; j++) { int t = e[i][k] + e[k][j] + a[k]; if(e[i][j] > t) { e[i][j] = t; p[i][j] = p[i][k]; } else if(e[i][j] == t) { if(p[i][j] > p[i][k]) p[i][j] = p[i][k]; } } } } } int main() { int n; while(~scanf("%d",&n)&&n) { for(int i = 1; i <= n; i++) { for(int j = 1; j <= n; j++) { scanf("%d",&e[i][j]); } } for(int i = 1; i <= n; i++) scanf("%d",&a[i]); init(n); floyd(n); int fr , to; while(~scanf("%d%d",&fr,&to)) { if(fr == -1 && to == -1) break; int end = fr; printf("From %d to %d :\n",fr,to); printf("Path: "); printf("%d",fr); while(end != to) { printf("-->%d",p[end][to]); end = p[end][to]; } printf("\n"); printf("Total cost : %d\n",e[fr][to]); printf("\n"); } } return 0; }
| Accepted | |
| Time | 31ms |
|---|---|
| Memory | 1952kB |
| Length | 1712 |
| Lang | G++ |
| Submitted | 2017-12-24 20:50:38 |
| Shared | |
| RemoteRunId | 23388578 |
Floyd算法+路径打印
本文介绍了一种结合Floyd算法进行最短路径查找及路径打印的方法。通过具体实例展示了如何利用该算法解决多城市间货物运输费用最小化的问题,并提供了实现代码。
1373

被折叠的 条评论
为什么被折叠?



