源码干货 | 手把手教你使用TensorFlow生成对抗样本

本文介绍了生成对抗网络在深度学习领域的应用与影响,探讨了如何利用生成对抗图像提高系统的鲁棒性,并通过一个实战案例展示了如何用TensorFlow生成对抗样本。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

本文来源于云栖社区,原文点击这里


如果说卷积神经网络是昔日影帝的话,那么生成对抗已然成为深度学习研究领域中一颗新晋的耀眼新星,它将彻底地改变我们认知世界的方式。


对抗学习训练为指导人工智能完成复杂任务提供了一个全新的思路,生成对抗图片能够非常轻松的愚弄之前训练好的分类器,因此如何利用生成对抗图片提高系统的鲁棒性是一个很有研究的热点问题。


神经网络合成的对抗样本很容易让人大吃一惊,这是因为对输入进行小巧精心制作的扰动就可能导致神经网络以任意选择的方式对输入进行错误地分类。鉴于对抗样本转移到物质世界,可以使其变得非常强大,因此这是一个值得关注的安全问题。比如说人脸识别,若一张对抗图像也被识别为真人的话,就会出现一些安全隐患及之后带来的巨大损失。


对生成对抗图像感兴趣的读者可以关注一下最近的Kaggle挑战赛NIPS,相关的信息可以参看博主的另外一篇:

《Kaggle首席技术官发布——(Kaggle)NIPS 2017对抗学习挑战赛起步指南》
在这篇文章中,将手把手带领读者利用TensorFlow实现一个简单的算法来合成对抗样本,之后使用这种技术建立一个鲁棒的对抗性例子。

本文是一个可执行的Jupyter notebook:可以下载并自己实验操作一下示例


上一篇

下一篇

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值