Bayes classifier
For classification, we use 0-1 loss function to choosing classifier, which can be denoted as L(y,y^)
If k-class is considered, our epxect prediction error is
EPE=E[L(G,G^(X))]=EXEY|X[L(G,G^(X))|X]
by minimizing pointwise,
G^(x)=argmin∑g=1kL(g,G^(X))p(g|X=x)=argming∈G[1−p(g|X=x)]=argmaxg∈Gp(g|X=x)
So Bayes classifier chooses the class with max posterior probability.
本文探讨了贝叶斯分类器的基本概念,并介绍了如何通过最小化0-1损失函数来选择最优分类器。通过数学推导说明了贝叶斯分类器如何选择具有最大后验概率的类别。

被折叠的 条评论
为什么被折叠?



