【代码超详解】POJ 3250 Bad Hair Day(单调栈,219 ms)

这篇博客介绍了POJ 3250 Bad Hair Day问题,这是一个关于计算每头牛能看到多少头比它矮的牛的题目。博主通过单调栈的算法分析,给出了详细的问题描述、输入输出格式,并提供了AC代码,代码运行时间为219 ms。

一、题目描述

Bad Hair Day

Time Limit: 2000MS Memory Limit: 65536K
Total Submissions: 27077 Accepted: 9287(2020/2/5 23:27)

Description

Some of Farmer John’s N cows (1 ≤ N ≤ 80,000) are having a bad hair day! Since each cow is self-conscious about her messy hairstyle, FJ wants to count the number of other cows that can see the top of other cows’ heads.

Each cow i has a specified height hi (1 ≤ hi ≤ 1,000,000,000) and is standing in a line of cows all facing east (to the right in our diagrams). Therefore, cow i can see the tops of the heads of cows in front of her (namely cows i+1, i+2, and so on), for as long as these cows are strictly shorter than cow i.

Consider this example:

在这里插入图片描述

Cow#1 can see the hairstyle of cows #2, 3, 4
Cow#2 can see no cow’s hairstyle
Cow#3 can see the hairstyle of cow #4
Cow#4 can see no cow’s hairstyle
Cow#5 can see the hairstyle of cow 6
Cow#6 can see no cows at all!

Let ci denote the number of cows whose hairstyle is visible from cow i; please compute the sum of c1 through cN.For this example, the desired is answer 3 + 0 + 1 + 0 + 1 + 0 = 5.

Input

Line 1: The number of cows, N.
Lines 2…N+1: Line i+1 contains a single integer that is the height of cow i.

个人防护装备实例分割数据集 一、基础信息 • 数据集名称:个人防护装备实例分割数据集 • 图片数量: 训练集:4524张图片 • 训练集:4524张图片 • 分类类别: 手套(Gloves) 头盔(Helmet) 未戴手套(No-Gloves) 未戴头盔(No-Helmet) 未穿鞋(No-Shoes) 未穿背心(No-Vest) 鞋子(Shoes) 背心(Vest) • 手套(Gloves) • 头盔(Helmet) • 未戴手套(No-Gloves) • 未戴头盔(No-Helmet) • 未穿鞋(No-Shoes) • 未穿背心(No-Vest) • 鞋子(Shoes) • 背心(Vest) • 标注格式:YOLO格式,适用于实例分割任务,包含边界框或多边形坐标。 • 数据格式:图片数据,来源于监控或相关场景。 二、适用场景 • 工业安全监控系统开发:用于自动检测工人是否佩戴必要的个人防护装备,提升工作场所安全性,减少工伤风险。 • 智能安防应用:集成到监控系统中,实时分析视频流,识别PPE穿戴状态,辅助安全预警。 • 合规性自动化检查:在建筑、制造等行业,自动检查个人防护装备穿戴合规性,支持企业安全审计。 • 计算机视觉研究:支持实例分割、目标检测等算法在安全领域的创新研究,促进AI模型优化。 三、数据集优势 • 类别全面:覆盖8种常见个人防护装备及其缺失状态,提供丰富的检测场景,确保模型能处理各种实际情况。 • 标注精准:采用YOLO格式,每个实例都经过精细标注,边界框或多边形坐标准确,提升模型训练质量。 • 真实场景数据:数据来源于实际环境,增强模型在真实世界中的泛化能力和实用性。 • 兼容性强:YOLO格式便于与主流深度学习框架(如YOLO、PyTorch等)集成,支持快速部署和实验。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值