ccnu_暑假周赛1

本文介绍了通过二进制位处理解决区间或值问题的方法,并提供了两种变换问题的解决思路,包括通过查找表预处理和二进制位比较来简化问题。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

A 区间or值

分位来做部分和,对于每一个二进制位,如果所有数在该位都是0,那么or起来的结果就是0,否则or起来的结果就是1。所以可以对每一位(最多30位)预处理一个前缀和,询问的时候利用前缀和思想判断各个位在区间[x,y]内的1的个数是不是等于0,如果1的个数是0则该位为0,大于0则该位是1。

#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <iostream>
#include <algorithm>
using namespace std;

const int maxn=100000+100;
int N,M,A[maxn][33],sum[maxn][33];

int main(int argc, char* argv[])
{
    int zz=0;
    scanf("%d",&zz);
    for (int test=1; test<=zz; test++)
    {
        scanf("%d%d",&N,&M);
        for (int i=1; i<=N; i++)
        {
            int x;
            scanf("%d",&x);
            for (int j=0; j<31; j++) A[i][j]=(x>>j)&1;
        }
        for (int j=0; j<31; j++) sum[0][j]=0;
        for (int i=1; i<=N; i++)
            for (int j=0; j<31; j++)
                sum[i][j]=sum[i-1][j]+A[i][j];
        while(M--)
        {
            int x,y;
            scanf("%d%d",&x,&y);
            int ans=0;
            for (int j=0; j<31; j++)
                if (sum[y][j]-sum[x-1][j]>0) ans|=(1<<j);
            printf("%d\n",ans);
        }
    }
    return 0;
}

B 变换

原题链接

思路1

因为每个数只有10^5,转化成二进制最多18位,容易想到的是变换的过程对于同一个数做乘法后不会再做除法,所以可以对每个数都把可能变换的情况都是一遍,打个表存下来。然后统计所有数到达同一个数需要的最小步数,取一个最小的即可。
代码链接

思路2

乘2的变换相当于二进制末尾添加一个0,除以2的变换相当于二机制末尾去除一个0或1。把所有数都转化成二进制后,例如5 6 2三个数会变成101 110 10。从左往右看,5 6 2的第一位都是1,都是相等的,我们可以让最后变换的那个目标数的第一位是1,可以不去修改它。然后看第二位分别是0 1 0如果我们要5 6 2的第二位也保持相等,显然需要把6的第二位1变成0(因为变换规则,无法把0变成1),所以6是必须把从第二位开始后的数全部删掉。所以问题就转化为101 1 10(5 1 2)。这时候再看第三位(没有的相当于是0),5 1 2的第三位分别是1 0 0,这时候5也必须删掉后面的,然后问题变成10 1 10(2 1 2)。至此,只要最后枚举答案是10(2)或者是1(1)即可,取变换次数最小的。
这题的思路大概就是,把每个数变成二进制后,从左往右看第w位(不足位数就相当于0),看第w位是否全为0或全为1,若全为0或全为1的话,这一位全部数都可以保留,否则,就将是1的数从这一位开始全部删掉。(是必须得删除的)
处理完后,剩下的数均由一个公共前缀和一些不同个数的0后缀组成。如1011 10110 101100 都是由1011+一些0组成,而且剩下的操作全部变成添加0和删除0,已经没有1的影响了,可以直接位移变换。所以,接下来,只要枚举最终目标数是谁就可以了(1011 10110 101100 1011000),这个例子中目标数是10110的时候变换次数最小。
代码链接

C 最萌身高差

直接做

#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <math.h>
#include <iostream>
#include <algorithm>
using namespace std;

const int maxn=10000+100;
int N,A[maxn];
char name[maxn][25];

int main(int argc, char* argv[])
{
    int zz=0;
    scanf("%d",&zz);
    for (int test=1; test<=zz; test++)
    {
        scanf("%d",&N);
        for (int i=1; i<=N; i++) scanf("%s%d",name[i],&A[i]);
        int ans=-1,k;
        for (int i=1; i<N; i++)
        {
            int ret=abs(A[i]-A[i+1]);
            if (ret>ans) ans=ret,k=i;
        }
        printf("%d\n",ans);
        printf("%s %s\n",name[k],name[k+1]);
    }
    return 0;
}

D gcd和lcm

简单做法可以从x到y枚举a,因为a*b=x*y,所以可以算出b(注意爆int),然后反过来求gcd(a,b)和lcm(a,b)是不是x和y。
更好一点的做法是令a=k1*x, b=k2*x,显然有gcd(k1,k2)=1),所以我们可以令r=y/x(要先判断能不能整除),开根号枚举r的约数k1,算出k2,然后判断gcd(k1,k2)是否为1。

#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <math.h>
#include <iostream>
using namespace std;

int gcd(int a,int b)
{
    if (b==0) return a;
    return gcd(b,a%b);
}

int main(int argc, char* argv[])
{
    int zz=0; 
    scanf("%d",&zz);
    for (int test=1; test<=zz; test++)
    {
        int x,y;
        scanf("%d%d",&x,&y);
        if (y%x!=0)
        {
            printf("0\n");
            continue;
        }
        int r=y /x;
        int ans=0;
        for (int i=1; i*i<=r; i++)
            if (r%i==0 && gcd(i,r/i)==1)
            {
                ans++;
                if (i!=r/i) ans++; 
            }
        printf("%d\n",ans);
    }
    return 0;
}

E 战火纷飞
题目有错,先放着不管。

F WOW
模拟题,给个标程吧。

#include <stdio.h>
#include <string.h>
#include <iostream>
#include <algorithm>
#include <vector>
using namespace std;
int maxhp[2005];
int hp[2005];
int hd[2005];
int n,a,b,x;
int solve(int type)
{
    if(type == 1) return x;
    else return a;
}
int main()
{
    int T;
    scanf("%d",&T);
    while(T--)
    {
        scanf("%d%d%d%d",&n,&x,&a,&b);
        int boss;
        memset(maxhp,-1,sizeof(maxhp));
        memset(hd,0,sizeof(hd));
        for(int i=0;i<n;i++)
        {
            int wi,hi;
            scanf("%d%d",&wi,&hi);
            wi+=1000;
            if(i == 0) boss = wi;
            hp[wi] = maxhp[wi] = hi;
        }
        int now = boss;
        int attack = x;
        int type = 1;
        int q;
        scanf("%d",&q);
        while(q--)
        {
            char s[15];
            scanf("%s",s);
            if(strcmp(s,"jihuo") == 0)
            {
                int k;
                scanf("%d",&k);
                k+=1000;
                if(maxhp[k] == -1)
                {
                    printf("nitemezaidouwo\n");
                    continue;
                }
                if(now == k)
                {
                    printf("shoudao\n");
                    continue;
                }
                now = k;
                attack = solve(type);
                printf("shoudao\n");
                continue;
            }
            if(strcmp(s,"gongji") == 0)
            {
                if(now == 2001)
                {
                    printf("womeiyoumubiao\n");
                    continue;
                }
                printf("ok\n");
                if(hd[now] != 0) hd[now]--;
                else
                {
                    hp[now] -= attack;
                    if(hp[now] <= 0)
                    {
                        maxhp[now] = -1;
                        hp[now] = 0;
                        if(maxhp[boss] == -1) now = 2001;
                        else now = boss;
                        attack = solve(type);
                        continue;
                    }
                }
                if(type == 0) attack += b;
            }
            else if(strcmp(s,"qiehuan") == 0)
            {
                type = !type;
                attack = solve(type);
            }
            else if(strcmp(s,"kill") == 0)
            {
                if(now != boss && now != 2001)
                {
                    printf("chenggong\n");
                    hd[now] = 0;
                    hp[now] = 0;
                    maxhp[now] = -1;
                    if(maxhp[boss] == -1) now = 2001;
                    else now = boss;
                    attack = solve(type);
                    continue;
                }
                printf("shibai\n");
                continue;
            }
            else if(strcmp(s,"huixue") == 0)
            {
                int k,h;
                scanf("%d%d",&k,&h);
                k+=1000;
                if(maxhp[boss] == -1) continue;
                if(maxhp[k] == -1) continue;
                else hp[k]=min(maxhp[k],hp[k]+h);
            }
            else if(strcmp(s,"hudun") == 0)
            {
                int k;
                scanf("%d",&k);
                k+=1000;
                if(maxhp[boss] == -1) continue;
                if(maxhp[k] == -1) continue;
                else hd[k] = 3;
            }
            else if(strcmp(s,"shuaguai") == 0)
            {
                int k,h;
                scanf("%d%d",&k,&h);
                k += 1000;
                if(maxhp[boss] == -1) continue;
                if(maxhp[k] != -1) continue;
                maxhp[k] = hp[k] = h;
            }
        }
        bool flag = 0;
        for(int i = 0;i <= 2000;i++)
        {
            if(maxhp[i] != -1)
            {
                if(!flag) flag = 1;
                else printf(" ");
                printf("%d",hp[i]);
            }
        }
        if(!flag) printf("wozhenshitailihaile");
        printf("\n");
    }
}
内容概要:该PPT详细介绍了企业架构设计的方法论,涵盖业务架构、数据架构、应用架构和技术架构四大核心模块。首先分析了企业架构现状,包括业务、数据、应用和技术四大架构的内容和关系,明确了企业架构设计的重要性。接着,阐述了新版企业架构总体框架(CSG-EAF 2.0)的形成过程,强调其融合了传统架构设计(TOGAF)和领域驱动设计(DDD)的优势,以适应数字化转型需求。业务架构部分通过梳理企业级和专业级价流,细化业务能力、流程和对象,确保业务战略的有效落地。数据架构部分则遵循五大原则,确保数据的准确、一致和高效使用。应用架构方面,提出了分层解耦和服务化的设计原则,以提高灵活性和响应速度。最后,技术架构部分围绕技术框架、组件、平台和部署节点进行了详细设计,确保技术架构的稳定性和扩展性。 适合人群:适用于具有一定企业架构设计经验的IT架构师、项目经理和业务分析师,特别是那些希望深入了解如何将企业架构设计与数字化转型相结合的专业人士。 使用场景及目标:①帮助企业和组织梳理业务流程,优化业务能力,实现战略目标;②指导数据管理和应用开发,确保数据的一致性和应用的高效性;③为技术选型和系统部署提供科学依据,确保技术架构的稳定性和扩展性。 阅读建议:此资源内容详尽,涵盖企业架构设计的各个方面。建议读者在学习过程中,结合实际案例进行理解和实践,重点关注各架构模块之间的关联和协同,以便更好地应用于实际工作中。
资 源 简 介 独立分量分析(Independent Component Analysis,简称ICA)是近二十年来逐渐发展起来的一种盲信号分离方法。它是一种统计方法,其目的是从由传感器收集到的混合信号中分离相互独立的源信号,使得这些分离出来的源信号之间尽可能独立。它在语音识别、电信和医学信号处理等信号处理方面有着广泛的应用,目前已成为盲信号处理,人工神经网络等研究领域中的一个研究热点。本文简要的阐述了ICA的发展、应用和现状,详细地论述了ICA的原理及实现过程,系统地介绍了目前几种主要ICA算法以及它们之间的内在联系, 详 情 说 明 独立分量分析(Independent Component Analysis,简称ICA)是近二十年来逐渐发展起来的一种盲信号分离方法。它是一种统计方法,其目的是从由传感器收集到的混合信号中分离相互独立的源信号,使得这些分离出来的源信号之间尽可能独立。它在语音识别、电信和医学信号处理等信号处理方面有着广泛的应用,目前已成为盲信号处理,人工神经网络等研究领域中的一个研究热点。 本文简要的阐述了ICA的发展、应用和现状,详细地论述了ICA的原理及实现过程,系统地介绍了目前几种主要ICA算法以及它们之间的内在联系,在此基础上重点分析了一种快速ICA实现算法一FastICA。物质的非线性荧光谱信号可以看成是由多个相互独立的源信号组合成的混合信号,而这些独立的源信号可以看成是光谱的特征信号。为了更好的了解光谱信号的特征,本文利用独立分量分析的思想和方法,提出了利用FastICA算法提取光谱信号的特征的方案,并进行了详细的仿真实验。 此外,我们还进行了进一步的研究,探索了其他可能的ICA应用领域,如音乐信号处理、图像处理以及金融数据分析等。通过在这些领域中的实验和应用,我们发现ICA在提取信号特征、降噪和信号分离等方面具有广泛的潜力和应用前景。
标题Spring框架在大型超市前后台系统中的应用研究AI更换标题第1章引言介绍研究背景、意义,分析国内外在该领域的研究现状,并概述论文的研究方法和创新点。1.1研究背景与意义阐述Spring框架在大型超市前后台系统中的应用背景及其实际意义。1.2国内外研究现状分析国内外关于Spring框架在大型超市前后台系统中的应用研究现状。1.3研究方法与创新点介绍论文的研究方法,并突出论文的创新之处。第2章Spring框架及相关技术概述对Spring框架进行简要介绍,包括其核心特性和相关技术。2.1Spring框架简介概述Spring框架的基本概念、主要特点和优势。2.2Spring框架的核心组件详细介绍Spring框架的核心组件,如IoC容器、AOP等。2.3与Spring框架相关的技术阐述与Spring框架紧密相关的技术,如Spring MVC、Spring Data等。第3章大型超市前后台系统需求分析对大型超市前后台系统的需求进行详细分析,为后续系统设计奠定基础。3.1前台系统需求分析分析前台系统的功能需求,如商品展示、购物车管理等。3.2后台系统需求分析分析后台系统的功能需求,如商品管理、订单处理等。3.3非功能性需求分析讨论系统的性能、安全性等非功能性需求。第4章基于Spring框架的大型超市前后台系统设计根据需求分析结果,设计基于Spring框架的大型超市前后台系统。4.1系统架构设计设计系统的整体架构,包括前后台系统的交互方式、数据流向等。4.2数据库设计设计系统的数据库结构,包括表结构、数据关系等。4.3界面设计设计前后台系统的用户界面,确保用户友好性和交互性。第5章系统实现与测试详细阐述系统的实现过程,并对系统进行测试以验证其功能和性能。5.1系统实现按照系统设计,实现前后台系统的各个功能模块。5.2系统测试对系统进行功能测试、性能测试等,确保系统满足需求并具有稳定性
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值