创建一个Fraction类(分数)实现分数的加减乘除,比较大小、约分等方法。

本文介绍了一个使用Objective-C实现的分数类,该类能够进行分数的加、减、乘、除等基本运算,并实现了约分及分数大小比较的功能。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

.h文件中的代码


#import <Foundation/Foundation.h>


@interface Fracton : NSObject

{

    NSInteger molecule;//分子

    NSInteger denominator;//分母

}

@property NSInteger molecule;

@property NSInteger denominator;

-(void)reductionOfFraction;//约分

- (void)add:(Fracton *)fenshu3;//

- (Fracton *)sub:(Fracton *)fenshu3;//

- (void)mult:(Fracton *)fenshu3;//乘法

- (void)division:(Fracton *)fenshu3;//除法

- (void)compare:(Fracton *)fenshu3;//比较


@end


.m文件中的代码


#import "Fracton.h"


@implementation Fracton


@synthesize molecule = _molecule;

@synthesize denominator = _denominator;

-(void)reductionOfFraction{

    NSInteger a = self.molecule;

    NSInteger b = self.denominator;

    NSInteger c = 0;

    while (b != 0) {

        c = a % b;

        a = b;

        b = c;

    }

        NSLog(@"%ld/%ld",self .molecule/a,self. denominator/a);

    }

- (void)add:(Fracton *)fenshu3{

    Fracton *fenshu2 =[Fracton alloc];

    fenshu2.molecule = (self.molecule * fenshu3.denominator) + (fenshu3.molecule * self.denominator);

    fenshu2.denominator = self.denominator * fenshu3.denominator;

    [fenshu2 reductionOfFraction];

}

- (Fracton *)sub:(Fracton *)fenshu3{

    Fracton *fenshu2 =[Fracton alloc];

    fenshu2.molecule = self.molecule * fenshu3.denominator - fenshu3.molecule * self.denominator;

    fenshu2.denominator = self.denominator * fenshu3.denominator;

    [fenshu2 reductionOfFraction];

    return fenshu2;

}

- (void)mult:(Fracton *)fenshu3{

    Fracton *fenshu2 =[Fracton alloc];

    fenshu2.molecule = self.molecule * fenshu3.molecule;

    fenshu2.denominator = self.denominator * fenshu3.denominator;

    [fenshu2 reductionOfFraction];

    

    

}//乘法

- (void)division:(Fracton *)fenshu3{

    Fracton *fenshu2 =[Fracton alloc];

    fenshu2.molecule = self.molecule * fenshu3.denominator;

    fenshu2.denominator = self.denominator * fenshu3.molecule;

    [fenshu2 reductionOfFraction];

    

}//除法

- (void)compare:(Fracton *)fenshu3{

    Fracton *fenshu2 =[Fracton alloc];

       fenshu2 = [self sub:fenshu3];

    if (fenshu2.molecule > 0) {

        NSLog(@"分数1大于分数2");

    }else if(fenshu2.molecule == 0)

    {

        NSLog(@"分数等于分数2");

    }else{

        NSLog(@"分数小于分数2");

    }

}

   @end


main函数中的实现


nt main(int argc, const char * argv[])

{


    @autoreleasepool {

        Fracton *fenshu1 = [Fracton alloc];

        fenshu1.molecule = 4;

        fenshu1.denominator = 6;

        Fracton *fenshu2 = [Fracton alloc];

        fenshu2.molecule = 2;

        fenshu2.denominator = 5;

        [fenshu1 add:fenshu2];

        [fenshu1 sub:fenshu2];

        [fenshu1 mult:fenshu2];

        [fenshu1 compare:fenshu2];

        [fenshu1 reductionOfFraction];


}

  return 0;

}


8.17 (Rational Numbers) Create a class called Rational for performing arithmetic with fractions. Write a program to test your class. Use integer variables to represent the private instance variables of the class the numerator and the denominator. Provide a constructor that enables an object of this class to be initialized when it is declared. The constructor should store the fraction in reduced form. The fraction 2/4 is equivalent to 1/2 and would be stored in the object as 1 in the numerator and 2 in the denominator. Provide a no-argument constructor with default values in case no initializers are provided. Provide public methods that perform each of the following operations: a. Add two Rational numbers: The result of the addition should be stored in reduced form. b. Subtract two Rational numbers: The result of the subtraction should be stored in reduced form. c. Multiply two Rational numbers: The result of the multiplication should be stored in reduced form. d. Divide two Rational numbers: The result of the division should be stored in reduced form. e. Print Rational numbers in the form a/b, where a is the numerator and b is the denominator. f. Print Rational numbers in floating-point format. (Consider providing formatting capabilities that enable the user of the class to specify the number of digits of precision to the right of the decimal point.) – 提示: – 有理数是有分子、分母以形式a/b表示的数,其中a是分子,b是分母。例如,1/3,3/4,10/4。 – 有理数的分母不能为0,分子却可以为0。每个整数a等价于有理数a/1。有理数用于分数的精确计算中。例如1/3=0.0000…,它不能使用数据型double或float的浮点格式精确表示出来,为了得到准确结果,必须使用有理数。 – Java提供了整数和浮点数的数据型,但是没有提供有理数的型。 – 由于有理数与整数、浮点数有许多共同特征,并且Number是数字包装的根,因此,把有理数Rational定义为Number一个比较合适的。由于有理数是可比较的,那么Rational也应该实现Comparable接口。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值