并发编程之概念、原理、操作
基础知识
并发编程的优缺点
为什么要使用并发编程(并发编程的优点)
充分利用多核CPU的计算能力:通过并发编程的形式可以将多核CPU的计算能力发挥到极致,性能得到提升
方便进行业务拆分,提升系统并发能力和性能:在特殊的业务场景下,先天的就适合于并发编程。现在的系统动不动就要求百万级甚至千万级的并发量,而多线程并发编程正是开发高并发系统的基础,利用好多线程机制可以大大提高系统整体的并发能力以及性能。面对复杂业务模型,并行程序会比串行程序更适应业务需求,而并发编程更能吻合这种业务拆分 。
并发编程有什么缺点
并发编程可以提高程序的执行效率、运行速度,但是也会造成内存泄漏、上下文切换、线程安全、死锁等问题。
并发编程三要素是什么?在 Java 程序中怎么保证多线程的运行安全?
原子性:一个或多个操作要么全部执行成功要么全部执行失败。
可见性:一个线程对共享变量的修改,另一个线程能够立刻看到。(synchronized,volatile)
有序性:程序执行的顺序按照代码的先后顺序执行。(处理器可能会对指令进行重排序)
出现线程安全问题的原因:
- 线程切换带来的原子性问题
- 缓存导致的可见性问题
- 编译优化带来的有序性问题
解决办法:
- JDK Atomic开头的原子类、synchronized、LOCK,可以解决原子性问题
- synchronized、volatile、LOCK,可以解决可见性问题
- Happens-Before 规则可以解决有序性问题
并行和并发有什么区别?
-
并发:多个任务在同一个 CPU 核上,按细分的时间片轮流(交替)执行,从逻辑上来看那些任务是同时执行。
-
并行:单位时间内,多个处理器或多核处理器同时处理多个任务,是真正意义上的“同时进行”。
什么是多线程,多线程的优劣?
多线程:即在一个程序中可以同时运行多个不同的线程来执行不同的任务。
多线程的好处:可以提高 CPU 的利用率。
多线程的劣势:线程越多占用内存也越多,线程之间对共享资源的访问会相互影响,必须解决竞用共享资源的问题。
线程和进程区别
什么是线程和进程?
进程
一个在内存中运行的应用程序。每个进程都有自己独立的一块内存空间,一个进程可以有多个线程,比如在Windows系统中,一个运行的xx.exe就是一个进程。
线程
进程中的一个执行任务(控制单元),负责当前进程中程序的执行。一个进程至少有一个线程,一个进程可以运行多个线程,多个线程可共享数据。
进程与线程的区别
线程具有许多传统进程所具有的特征,故又称为轻型进程(Light—Weight Process)或进程元;而把传统的进程称为重型进程(Heavy—Weight Process),它相当于只有一个线程的任务。在引入了线程的操作系统中,通常一个进程都有若干个线程,至少包含一个线程。
根本区别:进程是操作系统资源分配的基本单位,而线程是处理器任务调度和执行的基本单位
资源开销:每个进程都有独立的代码和数据空间(程序上下文),程序之间的切换会有较大的开销;线程可以看做轻量级的进程,同一类线程共享代码和数据空间,每个线程都有自己独立的运行栈和程序计数器(PC),线程之间切换的开销小。
包含关系:如果一个进程内有多个线程,则执行过程不是一条线的,而是多条线(线程)共同完成的;线程是进程的一部分,所以线程也被称为轻权进程或者轻量级进程。
内存分配:同一进程的线程共享本进程的地址空间和资源,而进程之间的地址空间和资源是相互独立的
影响关系:一个进程崩溃后,在保护模式下不会对其他进程产生影响,但是一个线程崩溃整个进程都死掉。所以多进程要比多线程健壮。
执行过程:每个独立的进程有程序运行的入口、顺序执行序列和程序出口。但是线程不能独立执行,必须依存在应用程序中,由应用程序提供多个线程执行控制,两者均可并发执行。
什么是上下文切换?
多线程编程中一般线程的个数都大于 CPU 核心的个数,而一个 CPU 核心在任意时刻只能被一个线程使用,为了让这些线程都能得到有效执行,CPU 采取的策略是为每个线程分配时间片并轮转的形式。当一个线程的时间片用完的时候就会重新处于就绪状态让给其他线程使用,这个过程就属于一次上下文切换。
概括来说就是:当前任务在执行完 CPU 时间片切换到另一个任务之前会先保存自己的状态,以便下次再切换回这个任务时,可以再加载这个任务的状态。任务从保存到再加载的过程就是一次上下文切换。
守护线程和用户线程有什么区别呢?
- 用户 (User) 线程:运行在前台,执行具体的任务,如程序的主线程、连接网络的子线程等都是用户线程
- 守护 (Daemon) 线程:运行在后台,为其他前台线程服务。也可以说守护线程是 JVM 中非守护线程的 “佣人”。一旦所有用户线程都结束运行,守护线程会随 JVM 一起结束工作
一旦所有用户线程都结束运行,守护线程会随 JVM 一起结束工作,所以守护 (Daemon) 线程中的 finally 语句块可能无法被执行。
创建线程的四种方式
创建线程有哪几种方式?
- 继承 Thread 类;
- 实现 Runnable 接口;
- 实现 Callable 接口;
- 使用 Executors 工具类创建线程池
继承 Thread 类
步骤
- 定义一个Thread类的子类,重写run方法,将相关逻辑实现,run()方法就是线程要执行的业务逻辑方法。
- 创建自定义的线程子类对象。
- 调用子类实例的star()方法来启动线程。
实现 Runnable 接口
步骤
定义Runnable接口实现类MyRunnable,并重写run()方法
创建MyRunnable实例myRunnable,以myRunnable作为target创建Thead对象,该Thread对象才是真正的线程对象
调用线程对象的start()方法
说一下 runnable 和 callable 有什么区别?
- 都是接口
- 都可以编写多线程程序
- 都采用Thread.start()启动线程
主要区别
Runnable 接口 run 方法无返回值;Callable 接口 call 方法有返回值,是个泛型,和Future、FutureTask配合可以用来获取异步执行的结果
Runnable 接口 run 方法只能抛出运行时异常,且无法捕获处理;Callable 接口 call 方法允许抛出异常,可以获取异常信息。
线程的 run()和 start()有什么区别?
每个线程都是通过某个特定Thread对象所对应的方法run()来完成其操作的,run()方法称为线程体。通过调用Thread类的start()方法来启动一个线程。
start() 方法用于启动线程,run() 方法用于执行线程的运行时代码。run() 可以重复调用,而 start() 只能调用一次。
start()方法来启动一个线程,真正实现了多线程运行。调用start()方法无需等待run方法体代码执行完毕,可以直接继续执行其他的代码; 此时线程是处于就绪状态,并没有运行。 然后通过此Thread类调用方法run()来完成其运行状态, run()方法运行结束, 此线程终止。然后CPU再调度其它线程。
run()方法是在本线程里的,只是线程里的一个函数,而不是多线程的。 如果直接调用run(),其实就相当于是调用了一个普通函数而已,直接待用run()方法必须等待run()方法执行完毕才能执行下面的代码,所以执行路径还是只有一条,根本就没有线程的特征,所以在多线程执行时要使用start()方法而不是run()方法。
为什么我们调用 start() 方法时会执行 run() 方法,为什么我们不能直接调用 run() 方法?
new 一个 Thread,线程进入了新建状态。调用 start() 方法,会启动一个线程并使线程进入了就绪状态,当分配到时间片后就可以开始运行了。 start() 会执行线程的相应准备工作,然后自动执行 run() 方法的内容,这是真正的多线程工作。
而直接执行 run() 方法,会把 run 方法当成一个 main 线程下的普通方法去执行,并不会在某个线程中执行它,所以这并不是多线程工作。
总结: 调用 start 方法方可启动线程并使线程进入就绪状态,而 run 方法只是 thread 的一个普通方法调用,还是在主线程里执行。
什么是 Callable 和 Future?
Callable 功能强大,被线程执行后,可以返回值。这个返回值可以被 Future 拿到,也就是说,Future 可以拿到异步执行任务的返回值。
Future 接口表示异步任务,是一个可能还没有完成的异步任务的结果
什么是 FutureTask?
FutureTask 表示一个异步运算的任务。
FutureTask 里面可以传入一个 Callable 的具体实现类,可以对这个异步运算的任务的结果进行等待获取、判断是否已经完成、取消任务等操作。只有当运算完成的时候结果才能取回,如果运算尚未完成 get 方法将会阻塞。
线程的状态和基本操作
说说线程的生命周期及五种基本状态?
- 新建(new):新创建了一个线程对象。
- 可运行(runnable):线程对象创建后,当调用线程对象的 start()方法,该线程处于就绪状态,等待被线程调度选中,获取cpu的使用权。
- 运行(running):可运行状态(runnable)的线程获得了cpu时间片(timeslice),执行程序代码。注:就绪状态是进入到运行状态的唯一入口,也就是说,线程要想进入运行状态执行,首先必须处于就绪状态中;
- 阻塞(block):处于运行状态中的线程由于某种原因,暂时放弃对 CPU的使用权,停止执行,此时进入阻塞状态,直到其进入到就绪状态,才 有机会再次被 CPU 调用以进入到运行状态。
阻塞的情况分三种:
(一). 等待阻塞:运行状态中的线程执行 wait()方法,JVM会把该线程放入等待队列(waitting queue)中,使本线程进入到等待阻塞状态;
(二). 同步阻塞:线程在获取 synchronized 同步锁失败(因为锁被其它线程所占用),,则JVM会把该线程放入锁池(lock pool)中,线程会进入同步阻塞状态;
(三). 其他阻塞: 通过调用线程的 sleep()或 join()或发出了 I/O 请求时,线程会进入到阻塞状态。当 sleep()状态时、join()等待线程终止或者超时、或者 I/O 处理完毕时,线程重新转入就绪状态。
死亡(dead):线程run()、main()方法执行结束,或者因异常退出了run()方法,则该线程结束生命周期。死亡的线程不可再次复生。
Java 中用到的线程调度算法是什么?
分时调度模型是:让所有的线程轮流获得 cpu 的使用权,并且平均分配每个线程占用的 CPU 的时间片这个也比较好理解。
Java虚拟机采用抢占式调度模型,是指优先让可运行池中优先级高的线程占用CPU,如果可运行池中的线程优先级相同,那么就随机选择一个线程,使其占用CPU。处于运行状态的线程会一直运行,直至它不得不放弃 CPU。
线程的调度策略
线程调度器选择优先级最高的线程运行,但是,如果发生以下情况,就会终止线程的运行:
(1)线程体中调用了 yield 方法让出了对 cpu 的占用权利
(2)线程体中调用了 sleep 方法使线程进入睡眠状态
(3)线程由于 IO 操作受到阻塞
(4)另外一个更高优先级线程出现
(5)在支持时间片的系统中,该线程的时间片用完
线程同步以及线程调度相关的方法?
(1) wait():使一个线程处于等待(阻塞)状态,并且释放所持有的对象的锁;
(2)sleep():使一个正在运行的线程处于睡眠状态,是一个静态方法,调用此方法要处理 InterruptedException 异常;
(3)notify():唤醒一个处于等待状态的线程,当然在调用此方法的时候,并不能确切的唤醒某一个等待状态的线程,而是由 JVM 确定唤醒哪个线程,而且与优先级无关;
(4)notityAll():唤醒所有处于等待状态的线程,该方法并不是将对象的锁给所有线程,而是让它们竞争,只有获得锁的线程才能进入就绪状态;
sleep() 和 wait() 有什么区别?
- 类的不同:sleep() 是 Thread线程类的静态方法,wait() 是 Object类的方法。
- 是否释放锁:sleep() 不释放锁;wait() 释放锁。
- 用途不同:Wait 通常被用于线程间交互/通信,sleep 通常被用于暂停执行。
- 用法不同:wait() 方法被调用后,线程不会自动苏醒,需要别的线程调用同一个对象上的 notify() 或者
- notifyAll() 方法。sleep() 方法执行完成后,线程会自动苏醒。或者可以使用wait(long timeout)超时后线程会自动苏醒。
为什么线程通信的方法 wait(), notify()和 notifyAll()被定义在 Object 类里?
Java中,任何对象都可以作为锁,并且 wait(),notify()等方法用于等待对象的锁或者唤醒线程。
为什么 wait(), notify()和 notifyAll()必须在同步方法或者同步块中被调用?
当一个线程需要调用对象的 wait()方法的时候,这个线程必须拥有该对象的锁,接着它就会释放这个对象锁并进入等待状态直到其他线程调用这个对象上的 notify()方法。
由于所有的这些方法都需要线程持有对象的锁,这样就只能通过同步来实现,所以他们只能在同步方法或者同步块中被调用。
Thread 类中的 yield 方法有什么作用?
使当前线程从执行状态(运行状态)变为可执行态(就绪状态)。
为什么 Thread 类的 sleep()和 yield ()方法是静态的?
Thread 类的 sleep()和 yield()方法将在当前正在执行的线程上运行。所以在其他处于等待状态的线程上调用这些方法是没有意义的。这就是为什么这些方法是静态的。它们可以在当前正在执行的线程中工作,并避免程序员错误的认为可以在其他非运行线程调用这些方法。
线程的 sleep()方法和 yield()方法有什么区别?
(1) sleep()方法给其他线程运行机会时不考虑线程的优先级,因此会给低优先级的线程以运行的机会;yield()方法只会给相同优先级或更高优先级的线程以运行的机会;
(2) 线程执行 sleep()方法后转入阻塞(blocked)状态,而执行 yield()方法后转入就绪(ready)状态;
(3)sleep()方法声明抛出 InterruptedException,而 yield()方法没有声明任何异常;
如何停止一个正在运行的线程?
- 使用退出标志,使线程正常退出,也就是当run方法完成后线程终止。
- 使用stop方法强行终止,但是不推荐这个方法,因为stop和suspend及resume一样都是过期作废的方法。
- 使用interrupt方法中断线程。
Java 中 interrupted 和 isInterrupted 方法的区别?
interrupt:用于中断线程。调用该方法的线程的状态为将被置为”中断”状态。
interrupted:是静态方法,查看当前中断信号是true还是false并且清除中断信号。如果一个线程被中断了,第一次调用 interrupted 则返回 true,第二次和后面的就返回 false 了。
如何在两个线程间共享数据?
在两个线程间共享变量即可实现共享。
一般来说,共享变量要求变量本身是线程安全的,然后在线程内使用的时候,如果有对共享变量的复合操作,那么也得保证复合操作的线程安全性。
Java 如何实现多线程之间的通讯和协作?
可以通过中断 和 共享变量的方式实现线程间的通讯和协作
Java中线程通信协作的最常见的两种方式:
一.syncrhoized加锁的线程的Object类的wait()/notify()/notifyAll()
二.ReentrantLock类加锁的线程的Condition类的await()/signal()/signalAll()
同步方法和同步块,哪个是更好的选择?
同步块是更好的选择,因为它不会锁住整个对象(当然你也可以让它锁住整个对象)。同步方法会锁住整个对象,哪怕这个类中有多个不相关联的同步块,这通常会导致他们停止执行并需要等待获得这个对象上的锁。
同步块更要符合开放调用的原则,只在需要锁住的代码块锁住相应的对象,这样从侧面来说也可以避免死锁。
请知道一条原则:同步的范围越小越好。
什么是线程同步和线程互斥,有哪几种实现方式?
当一个线程对共享的数据进行操作时,应使之成为一个”原子操作“,即在没有完成相关操作之前,不允许其他线程打断它,否则,就会破坏数据的完整性,必然会得到错误的处理结果,这就是线程的同步。
线程互斥是指对于共享的进程系统资源,在各单个线程访问时的排它性。当有若干个线程都要使用某一共享资源时,任何时刻最多只允许一个线程去使用,其它要使用该资源的线程必须等待,直到占用资源者释放该资源。线程互斥可以看成是一种特殊的线程同步。
什么叫线程安全?servlet 是线程安全吗?
某个方法在多线程环境中被调用时,能够正确地处理多个线程之间的共享变量,使程序功能正确完成
Servlet 不是线程安全的,servlet 是单实例多线程的,当多个线程同时访问同一个方法,是不能保证共享变量的线程安全性的。
在 Java 程序中怎么保证多线程的运行安全?
-
使用安全类,比如 java.util.concurrent 下的类,使用原子类AtomicInteger
-
方法二:使用自动锁 synchronized。
-
方法三:使用手动锁 Lock。
线程类的构造方法、静态块是被哪个线程调用的
线程类的构造方法、静态块是被 new这个线程类所在的线程所调用的,而 run 方法里面的代码才是被线程自身所调用的。
并发理论
Java内存模型
Java中垃圾回收有什么目的?什么时候进行垃圾回收?
垃圾回收是在内存中存在没有引用的对象或超过作用域的对象时进行的。
垃圾回收的目的是识别并且丢弃应用不再使用的对象来释放和重用资源。
如果对象的引用被置为null,垃圾收集器是否会立即释放对象占用的内存?
不会,在下一个垃圾回调周期中,这个对象将是被可回收的。
finalize()方法什么时候被调用?
- 垃圾回收器(garbage colector)决定回收某对象时,就会运行该对象的finalize()方法,一旦垃圾回收器准备释放对象占用的内存,将首先调用该对象的finalize()方法,并且下一次垃圾回收动作发生时,才真正回收对象占用的内存空间
重排序与数据依赖性
为什么代码会重排序?
为了提供性能,处理器和编译器常常会对指令进行重排序。
要满足以下两个条件:
- 在单线程环境下不能改变程序运行的结果;
- 存在数据依赖关系的不允许重排序
as-if-serial规则和happens-before规则的区别
- as-if-serial语义保证单线程内程序的执行结果不被改变,happens-before关系保证正确同步的多线程程序的执行结果不被改变。
- as-if-serial语义和happens-before这么做的目的,都是为了在不改变程序执行结果的前提下,尽可能地提高程序执行的并行度。
并发关键字
synchronized
synchronized 的作用?
在 Java 中,synchronized 关键字是用来控制线程同步的,就是在多线程的环境下,控制 synchronized 代码段不被多个线程同时执行。synchronized 可以修饰类、方法、变量。
说说自己是怎么使用 synchronized 关键字,在项目中用到了吗
synchronized关键字最主要的三种使用方式:
修饰实例方法: 作用于当前对象实例加锁,进入同步代码前要获得当前对象实例的锁
修饰静态方法: 也就是给当前类加锁,会作用于类的所有对象实例,因为静态成员不属于任何一个实例对象,是类成员( static 表明这是该类的一个静态资源,不管new了多少个对象,只有一份)。所以如果一个线程A调用一个实例对象的非静态 synchronized 方法,而线程B需要调用这个实例对象所属类的静态 synchronized 方法,是允许的,不会发生互斥现象,因为访问静态 synchronized 方法占用的锁是当前类的锁,而访问非静态 synchronized 方法占用的锁是当前实例对象锁。
修饰代码块: 指定加锁对象,对给定对象加锁,进入同步代码库前要获得给定对象的锁。
总结: synchronized 关键字加到 static 静态方法和 synchronized(class)代码块上都是是给 Class 类上锁。synchronized 关键字加到实例方法上是给对象实例上锁。尽量不要使用 synchronized(String a) 因为JVM中,字符串常量池具有缓存功能!
说一下 synchronized 底层实现原理?
可以看出在执行同步代码块之前之后都有一个monitor字样,其中前面的是monitorenter,后面的是离开monitorexit,不难想象一个线程也执行同步代码块,首先要获取锁,而获取锁的过程就是monitorenter ,在执行完代码块之后,要释放锁,释放锁就是执行monitorexit指令。
synchronized可重入的原理
重入锁是指一个线程获取到该锁之后,该线程可以继续获得该锁。底层原理维护一个计数器,当线程获取该锁时,计数器加一,再次获得该锁时继续加一,释放锁时,计数器减一,当计数器值为0时,表明该锁未被任何线程所持有,其它线程可以竞争获取锁。
什么是自旋
如果线程没有获取锁,那么会一直不断地尝试获取锁,这就是自旋。
多线程中 synchronized 锁升级的原理是什么?
synchronized 锁升级原理:在锁对象的对象头里面有一个 threadid 字段,在第一次访问的时候 threadid 为空,jvm 让其持有偏向锁,并将 threadid 设置为其线程 id,再次进入的时候会先判断 threadid 是否与其线程 id 一致,如果一致则可以直接使用此对象,如果不一致,则升级偏向锁为轻量级锁,通过自旋循环一定次数来获取锁,执行一定次数之后,如果还没有正常获取到要使用的对象,此时就会把锁从轻量级升级为重量级锁,此过程就构成了 synchronized 锁的升级。
锁的升级的目的:锁升级是为了减低了锁带来的性能消耗。在 Java 6 之后优化 synchronized 的实现方式,使用了偏向锁升级为轻量级锁再升级到重量级锁的方式,从而减低了锁带来的性能消耗。
线程 B 怎么知道线程 A 修改了变量
(1)volatile 修饰变量
(2)synchronized 修饰修改变量的方法
(3)wait/notify
(4)while 轮询
synchronized 和 Lock 有什么区别?
-
首先synchronized是Java内置关键字,在JVM层面,Lock是个Java类;
-
synchronized 可以给类、方法、代码块加锁;而 lock 只能给代码块加锁。
-
synchronized 不需要手动获取锁和释放锁,使用简单,发生异常会自动释放锁,不会造成死锁;而 lock 需要自己加锁和释放锁,如果使用不当没有 unLock()去释放锁就会造成死锁。
-
通过 Lock 可以知道有没有成功获取锁,而 synchronized 却无法办到。
synchronized 和 ReentrantLock 区别是什么?
相同点:两者都是可重入锁
ReentrantLock 使用起来比较灵活,但是必须有释放锁的配合动作;
ReentrantLock 必须手动获取与释放锁,而 synchronized 不需要手动释放和开启锁;
ReentrantLock 只适用于代码块锁,而 synchronized 可以修饰类、方法、变量等。
二者的锁机制其实也是不一样的。ReentrantLock 底层调用的是 Unsafe 的park 方法加锁,synchronized 操作的应该是对象头中 mark word
Java中每一个对象都可以作为锁,这是synchronized实现同步的基础:
- 普通同步方法,锁是当前实例对象
- 静态同步方法,锁是当前类的class对象
- 同步方法块,锁是括号里面的对象
volatile
volatile 关键字的作用
对于可见性,Java 提供了 volatile 关键字来保证可见性和禁止指令重排。 volatile 提供 happens-before 的保证,确保一个线程的修改能对其他线程是可见的。当一个共享变量被 volatile 修饰时,它会保证修改的值会立即被更新到主存,当有其他线程需要读取时,它会去内存中读取新值。
从实践角度而言,volatile 的一个重要作用就是和 CAS 结合,保证了原子性,详细的可以参见 java.util.concurrent.atomic 包下的类,比如 AtomicInteger。
volatile 常用于多线程环境下的单次操作(单次读或者单次写)。
Java 中能创建 volatile 数组吗?
能,Java 中可以创建 volatile 类型数组,不过只是一个指向数组的引用,而不是整个数组。意思是,如果改变引用指向的数组,将会受到 volatile 的保护,但是如果多个线程同时改变数组的元素,volatile 标示符就不能起到之前的保护作用了。
volatile 变量和 atomic 变量有什么不同?
volatile 变量可以确保先行关系,即写操作会发生在后续的读操作之前, 但它并不能保证原子性。例如用 volatile 修饰 count 变量,那么 count++ 操作就不是原子性的。
而 AtomicInteger 类提供的 atomic 方法可以让这种操作具有原子性如getAndIncrement()方法会原子性的进行增量操作把当前值加一,其它数据类型和引用变量也可以进行相似操作。
volatile 能使得一个非原子操作变成原子操作吗?
关键字volatile的主要作用是使变量在多个线程间可见,但无法保证原子性,对于多个线程访问同一个实例变量需要加锁进行同步。
虽然volatile只能保证可见性不能保证原子性,但用volatile修饰long和double可以保证其操作原子性。
所以从Oracle Java Spec里面可以看到:
对于64位的long和double,如果没有被volatile修饰,那么对其操作可以不是原子的。在操作的时候,可以分成两步,每次对32位操作。
如果使用volatile修饰long和double,那么其读写都是原子操作
对于64位的引用地址的读写,都是原子操作
在实现JVM时,可以自由选择是否把读写long和double作为原子操作
推荐JVM实现为原子操作
synchronized 和 volatile 的区别是什么?
synchronized 表示只有一个线程可以获取作用对象的锁,执行代码,阻塞其他线程。
volatile 是变量修饰符;synchronized 可以修饰类、方法、变量。
volatile 仅能实现变量的修改可见性,不能保证原子性;而 synchronized 则可以保证变量的修改可见性和原子性。
volatile 不会造成线程的阻塞;synchronized 可能会造成线程的阻塞。
volatile标记的变量不会被编译器优化;synchronized标记的变量可以被编译器优化。
volatile关键字是线程同步的轻量级实现,所以volatile性能肯定比synchronized关键字要好。但是volatile关键字只能用于变量而synchronized关键字可以修饰方法以及代码块。synchronized关键字在JavaSE1.6之后进行了主要包括为了减少获得锁和释放锁带来的性能消耗而引入的偏向锁和轻量级锁以及其它各种优化之后执行效率有了显著提升,实际开发中使用 synchronized 关键字的场景还是更多一些。
final
什么是不可变对象,它对写并发应用有什么帮助?
对象一旦被创建它的状态(对象的数据,也即对象属性值)就不能改变,反之即为可变对象(Mutable Objects)。
只有满足如下状态,一个对象才是不可变的;
- 它的状态不能在创建后再被修改;
- 所有域都是 final 类型;并且,它被正确创建(创建期间没有发生 this 引用的逸出)。
Lock体系
Lock简介与初识AQS
Java Concurrency API 中的 Lock 接口(Lock interface)是什么?对比同步它有什么优势?
(1)可以使锁更公平
(2)可以使线程在等待锁的时候响应中断
(3)可以让线程尝试获取锁,并在无法获取锁的时候立即返回或者等待一段时间
(4)可以在不同的范围,以不同的顺序获取和释放锁
乐观锁和悲观锁的理解及如何实现,有哪些实现方式?
悲观锁:总是假设最坏的情况,每次去拿数据的时候都认为别人会修改,所以每次在拿数据的时候都会上锁,这样别人想拿这个数据就会阻塞直到它拿到锁。传统的关系型数据库里边就用到了很多这种锁机制,比如行锁,表锁等,读锁,写锁等,都是在做操作之前先上锁。再比如 Java 里面的同步原语 synchronized 关键字的实现也是悲观锁。
乐观锁:顾名思义,就是很乐观,每次去拿数据的时候都认为别人不会修改,所以不会上锁,但是在更新的时候会判断一下在此期间别人有没有去更新这个数据,可以使用版本号等机制。乐观锁适用于多读的应用类型,这样可以提高吞吐量,像数据库提供的类似于 write_condition 机制,其实都是提供的乐观锁。在 Java中 java.util.concurrent.atomic 包下面的原子变量类就是使用了乐观锁的一种实现方式 CAS 实现的。
乐观锁的实现方式:
1、使用版本标识来确定读到的数据与提交时的数据是否一致。提交后修改版本标识,不一致时可以采取丢弃和再次尝试的策略。
2、java 中的 Compare and Swap 即 CAS ,当多个线程尝试使用 CAS 同时更新同一个变量时,只有其中一个线程能更新变量的值,而其它线程都失败,失败的线程并不会被挂起,而是被告知这次竞争中失败,并可以再次尝试。 CAS 操作中包含三个操作数 —— 需要读写的内存位置(V)、进行比较的预期原值(A)和拟写入的新值(B)。如果内存位置 V 的值与预期原值 A 相匹配,那么处理器会自动将该位置值更新为新值 B。否则处理器不做任何操作。
什么是 CAS
cas 是一种基于锁的操作,而且是乐观锁。在 java 中锁分为乐观锁和悲观锁。悲观锁是将资源锁住,等一个之前获得锁的线程释放锁之后,下一个线程才可以访问。而乐观锁采取了一种宽泛的态度,通过某种方式不加锁来处理资源,比如通过给记录加 version 来获取数据,性能较悲观锁有很大的提高。
java.util.concurrent.atomic 包下的类大多是使用 CAS 操作来实现的(AtomicInteger,AtomicBoolean,AtomicLong)。
CAS 的会产生什么问题?
1、ABA 问题:比如说一个线程 one 从内存位置 V 中取出 A,这时候另一个线程 two 也从内存中取出 A,并且 two 进行了一些操作变成了 B,然后 two 又将 V 位置的数据变成 A,这时候线程 one 进行 CAS 操作发现内存中仍然是 A,然后 one 操作成功。尽管线程 one 的 CAS 操作成功,但可能存在潜藏的问题。从 Java1.5 开始 JDK 的 atomic包里提供了一个类 AtomicStampedReference 来解决 ABA 问题。
2、循环时间长开销大:对于资源竞争严重(线程冲突严重)的情况,CAS 自旋的概率会比较大,从而浪费更多的 CPU 资源,效率低于 synchronized。
3、只能保证一个共享变量的原子操作:
当对一个共享变量执行操作时,我们可以使用循环 CAS 的方式来保证原子操作,但是对多个共享变量操作时,循环 CAS 就无法保证操作的原子性,这个时候就可以用锁。
AQS(AbstractQueuedSynchronizer)详解与源码分析
AQS的全称为(AbstractQueuedSynchronizer),这个类在java.util.concurrent.locks包下面。
AQS是一个用来构建锁和同步器的框架,使用AQS能简单且高效地构造出应用广泛的大量的同步器,比如我们提到的ReentrantLock,Semaphore,其他的诸如ReentrantReadWriteLock,SynchronousQueue,FutureTask等等皆是基于AQS的。当然,我们自己也能利用AQS非常轻松容易地构造出符合我们自己需求的同步器。
AQS 原理分析
AQS核心思想是,如果被请求的共享资源空闲,则将当前请求资源的线程设置为有效的工作线程,并且将共享资源设置为锁定状态。如果被请求的共享资源被占用,那么就需要一套线程阻塞等待以及被唤醒时锁分配的机制,这个机制AQS是用CLH队列锁实现的,即将暂时获取不到锁的线程加入到队列中。
private volatile int state;//共享变量,使用volatile修饰保证线程可见性
AQS定义两种资源共享方式
Exclusive(独占):只有一个线程能执行,如ReentrantLock。又可分为公平锁和非公平锁:
公平锁:按照线程在队列中的排队顺序,先到者先拿到锁
非公平锁:当线程要获取锁时,无视队列顺序直接去抢锁,谁抢到就是谁的
Share(共享):多个线程可同时执行,如Semaphore/CountDownLatch。Semaphore、CountDownLatch、 CyclicBarrier、ReadWriteLock 我们都会在后面讲到。
什么是可重入锁
ReentrantLock重入锁:能够对共享资源能够重复加锁,即当前线程获取该锁再次获取不会被阻塞。
在线程获取锁的时候,如果已经获取锁的线程是当前线程的话则直接再次获取成功;2. 由于锁会被获取n次,那么只有锁在被释放同样的n次之后,该锁才算是完全释放成功。
ReentrantLock支持两种锁:公平锁和非公平锁。何谓公平性,是针对获取锁而言的,如果一个锁是公平的,那么锁的获取顺序就应该符合请求上的绝对时间顺序,满足FIFO。
读写锁ReentrantReadWriteLock源码分析
ReadWriteLock 是什么
(1)公平选择性:支持非公平(默认)和公平的锁获取方式,吞吐量还是非公平优于公平。
(2)重进入:读锁和写锁都支持线程重进入。
(3)锁降级:遵循获取写锁、获取读锁再释放写锁的次序,写锁能够降级成为读锁。
Condition源码分析与等待通知机制
LockSupport详解
并发容器
并发容器之ConcurrentHashMap详解(JDK1.8版本)与源码分析
什么是ConcurrentHashMap?
ConcurrentHashMap是Java中的一个线程安全且高效的HashMap实现。平时涉及高并发如果要用map结构,那第一时间想到的就是它。相对于hashmap来说,ConcurrentHashMap就是线程安全的map,其中利用了锁分段的思想提高了并发度。
JDK 1.6版本关键要素:
- segment继承了ReentrantLock充当锁的角色,为每一个segment提供了线程安全的保障;
- segment维护了哈希散列表的若干个桶,每个桶由HashEntry构成的链表。
JDK1.8后,ConcurrentHashMap抛弃了原有的Segment 分段锁,而采用了 CAS + synchronized 来保证并发安全性。
SynchronizedMap 和 ConcurrentHashMap 有什么区别?
SynchronizedMap 一次锁住整张表来保证线程安全,所以每次只能有一个线程来访为 map。
ConcurrentHashMap 使用分段锁来保证在多线程下的性能。
ConcurrentHashMap 中则是一次锁住一个桶。ConcurrentHashMap 默认将hash 表分为 16 个桶,诸如 get,put,remove 等常用操作只锁当前需要用到的桶。
并发容器之CopyOnWriteArrayList详解
CopyOnWriteArrayList 的缺点
由于写操作的时候,需要拷贝数组,会消耗内存,如果原数组的内容比较多的情况下,可能导致 young gc 或者 full gc。
不能用于实时读的场景,像拷贝数组、新增元素都需要时间,所以调用一个 set 操作后,读取到数据可能还是旧的,虽然CopyOnWriteArrayList 能做到最终一致性,但是还是没法满足实时性要求。
由于实际使用中可能没法保证 CopyOnWriteArrayList 到底要放置多少数据,万一数据稍微有点多,每次 add/set 都要重新复制数组,这个代价实在太高昂了。在高性能的互联网应用中,这种操作分分钟引起故障。
CopyOnWriteArrayList 的设计思想
- 读写分离,读和写分开
- 最终一致性
- 使用另外开辟空间的思路,来解决并发冲突
并发容器之ThreadLocal详解
ThreadLocal 是什么?有哪些使用场景?
ThreadLocal 是一个本地线程副本变量工具类,在每个线程中都创建了一个 ThreadLocalMap 对象。:线程局部变量是局限于线程内部的变量,属于线程自身所有,不在多个线程间共享。Java提供ThreadLocal类来支持线程局部变量,是一种实现线程安全的方式。
ThreadLocal内存泄漏分析与解决方案
ThreadLocal造成内存泄漏的原因?
ThreadLocalMap
中使用的 key 为 ThreadLocal
的弱引用,而 value 是强引用。所以,如果 ThreadLocal 没有被外部强引用的情况下,在垃圾回收的时候,key 会被清理掉,而 value 不会被清理掉。这样一来,ThreadLocalMap 中就会出现key为null的Entry。假如我们不做任何措施的话,value 永远无法被GC 回收,这个时候就可能会产生内存泄露。
ThreadLocal内存泄漏解决方案?
每次使用完ThreadLocal,都调用它的remove()方法,清除数据。
在使用线程池的情况下,没有及时清理ThreadLocal,不仅是内存泄漏的问题,更严重的是可能导致业务逻辑出现问题。所以,使用ThreadLocal就跟加锁完要解锁一样,用完就清理。
并发容器之BlockingQueue详解
什么是阻塞队列?阻塞队列的实现原理是什么?如何使用阻塞队列来实现生产者-消费者模型?
在队列为空时,获取元素的线程会等待队列变为非空。当队列满时,存储元素的线程会等待队列可用。
- ArrayBlockingQueue :一个由数组结构组成的有界阻塞队列。
- LinkedBlockingQueue :一个由链表结构组成的有界阻塞队列。
- PriorityBlockingQueue :一个支持优先级排序的无界阻塞队列。
- DelayQueue:一个使用优先级队列实现的无界阻塞队列。
- SynchronousQueue:一个不存储元素的阻塞队列。
- LinkedTransferQueue:一个由链表结构组成的无界阻塞队列。
- LinkedBlockingDeque:一个由链表结构组成的双向阻塞队列。
线程池
Executors类创建四种常见线程池
什么是线程池?有哪几种创建方式?
创建和销毁对象是很费时间的,因为创建一个对象要获取内存资源或者其它更多资源。在 Java 中更是如此,虚拟机将试图跟踪每一个对象,以便能够在对象销毁后进行垃圾回收。所以提高服务程序效率的一个手段就是尽可能减少创建和销毁对象的次数,特别是一些很耗资源的对象创建和销毁,这就是”池化资源”技术产生的原因。
干个可执行的线程放入一个池(容器)中,需要的时候从池中获取线程不用自行创建,使用完毕不需要销毁线程而是放回池中,从而减少创建和销毁线程对象的开销。
线程池接口是 ExecutorService
线程池:
- newSingleThreadExecutor:创建一个**单线程的线程池。**这个线程池只有一个线程在工作,也就是相当于单线程串行执行所有任务。如果这个唯一的线程因为异常结束,那么会有一个新的线程来替代它。此线程池保证所有任务的执行顺序按照任务的提交顺序执行。
- newFixedThreadPool:**创建固定大小的线程池。每次提交一个任务就创建一个线程,**直到线程达到线程池的最大大小。线程池的大小一旦达到最大值就会保持不变,如果某个线程因为执行异常而结束,那么线程池会补充一个新线程。如果希望在服务器上使用线程池,建议使用 newFixedThreadPool方法来创建线程池,这样能获得更好的性能。
- newCachedThreadPool:创**建一个可缓存的线程池。如果线程池的大小超过了处理任务所需要的线程,**那么就会回收部分空闲(60 秒不执行任务)的线程,当任务数增加时,此线程池又可以智能的添加新线程来处理任务。此线程池不会对线程池大小做限制,线程池大小完全依赖于操作系统(或者说 JVM)能够创建的最大线程大小。
- newScheduledThreadPool:创建一个大小无限的线程池。此线程池支持定时以及周期性执行任务的需求。
线程池有什么优点?
降低资源消耗:重用存在的线程,减少对象创建销毁的开销。
提高响应速度。可有效的控制最大并发线程数,提高系统资源的使用率,同时避免过多资源竞争,避免堵塞。当任务到达时,任务可以不需要的等到线程创建就能立即执行。
提高线程的可管理性。线程是稀缺资源,如果无限制的创建,不仅会消耗系统资源,还会降低系统的稳定性,使用线程池可以进行统一的分配,调优和监控。
附加功能:提供定时执行、定期执行、单线程、并发数控制等功能。
线程池都有哪些状态?
RUNNING:这是最正常的状态,接受新的任务,处理等待队列中的任务。
SHUTDOWN:不接受新的任务提交,但是会继续处理等待队列中的任务。
STOP:不接受新的任务提交,不再处理等待队列中的任务,中断正在执行任务的线程。
TIDYING:所有的任务都销毁了,workCount 为 0,线程池的状态在转换为 TIDYING 状态时,会执行钩子方法 terminated()。
TERMINATED:terminated()方法结束后,线程池的状态就会变成这个。
什么是 Executor 框架?为什么使用 Executor 框架?
Executor 框架是一个根据一组执行策略调用,调度,执行和控制的异步任务的框架。
Java 中 Executor 和 Executors 的区别?
- Executors 工具类的不同方法按照我们的需求创建了不同的线程池,来满足业务的需求。
- Executor 接口对象能执行我们的线程任务。
- ExecutorService 接口继承了 Executor 接口并进行了扩展,提供了更多的方法我们能获得任务执行的状态并且可以获取任务的返回值。
- 使用 ThreadPoolExecutor 可以创建自定义线程池。
- Future 表示异步计算的结果,他提供了检查计算是否完成的方法,以等待计算的完成,并可以使用 get()方法获取计算的结果。
线程池中 submit() 和 execute() 方法有什么区别?
接收参数:execute()只能执行 Runnable 类型的任务。submit()可以执行 Runnable 和 Callable 类型的任务。
**返回值:**submit()方法可以返回持有计算结果的 Future 对象,而execute()没有
异常处理:submit()方便Exception处理
线程池之ThreadPoolExecutor详解
Executors和ThreaPoolExecutor创建线程池的区别
你知道怎么创建线程池吗?
ThreadPoolExecutor
ThreadPoolExecutor构造函数重要参数分析
ThreadPoolExecutor
3 个最重要的参数:
corePoolSize
:核心线程数,线程数定义了最小可以同时运行的线程数量。maximumPoolSize
:线程池中允许存在的工作线程的最大数量workQueue
:当新任务来的时候会先判断当前运行的线程数量是否达到核心线程数,如果达到的话,任务就会被存放在队列中。
ThreadPoolExecutor其他常见参数:
- keepAliveTime:线程池中的线程数量大于 corePoolSize 的时候,如果这时没有新的任务提交,核心线程外的线程不会立即销毁,而是会等待,直到等待的时间超过了 keepAliveTime才会被回收销毁;
- unit :keepAliveTime 参数的时间单位。
- threadFactory:为线程池提供创建新线程的线程工厂
- handler :线程池任务队列超过 maxinumPoolSize 之后的拒绝策略
ThreadPoolExecutor饱和策略
-
ThreadPoolExecutor.AbortPolicy
:抛出RejectedExecutionException
来拒绝新任务的处理。 -
ThreadPoolExecutor.CallerRunsPolicy
:调用执行自己的线程运行任务。您不会任务请求。但是这种策略会降低对于新任务提交速度,影响程序的整体性能。另外,这个策略喜欢增加队列容量。如果您的应用程序可以承受此延迟并且你不能任务丢弃任何一个任务请求的话,你可以选择这个策略。 -
DiscardPolicy
:不处理新任务,直接丢弃掉 -
DiscardOldestPolicy
: 此策略将丢弃最早的未处理的任务请求。
原子操作类
什么是原子操作?在 Java Concurrency API 中有哪些原子类(atomic classes)?
原子操作(atomic operation)意为”不可被中断的一个或一系列操作” 。
原子类:AtomicBoolean,AtomicInteger,AtomicLong,AtomicReference
说一下 atomic 的原理?
Atomic包中的类基本的特性就是在多线程环境下,当有多个线程同时对单个(包括基本类型及引用类型)变量进行操作时,具有排他性,即当多个线程同时对该变量的值进行更新时,仅有一个线程能成功,而未成功的线程可以向自旋锁一样,继续尝试,一直等到执行成功。
并发工具
并发工具之CountDownLatch与CyclicBarrier
在 Java 中 CycliBarriar 和 CountdownLatch 有什么区别?
CyclicBarrier一般用于一组线程互相等待至某个状态,然后这一组线程再同时执行
CountDownLatch一般用于某个线程A等待若干个其他线程执行完任务之后,它才执行
并发工具之Semaphore
Semaphore 就是一个信号量,它的作用是限制某段代码块的并发数。Semaphore有一个构造函数,可以传入一个 int 型整数 n,表示某段代码最多只有 n 个线程可以访问。
参考:ThinkWon。