题目描述:
n
≤
1
0
10
n\le10^{10}
n≤1010
题目分析:
根据差比数列的基本操作可得:
∑
i
=
1
n
i
1
0
i
=
(
9
n
−
1
)
1
0
n
+
1
+
10
81
\sum_{i=1}^ni10^i=\frac {(9n-1)10^{n+1}+10}{81}
i=1∑ni10i=81(9n−1)10n+1+10
根据杜教筛的基本操作可得:
∑
d
=
1
n
d
μ
(
d
)
=
1
−
∑
i
=
2
n
i
∑
d
=
1
⌊
n
i
⌋
d
μ
(
d
)
\sum_{d=1}^nd\mu(d)=1-\sum_{i=2}^ni\sum_{d=1}^{\lfloor\frac ni\rfloor}d\mu(d)
d=1∑ndμ(d)=1−i=2∑nid=1∑⌊in⌋dμ(d)
打代码的时候发现由于n/i/j=n/(ij)等等不知名的神奇原因,杜教筛可以不用递归!
Code:
#include<bits/stdc++.h>
#define LL long long
using namespace std;
const int mod = 258280327, N = 10000000, inv81 = 255091681;
LL n;
int p[N/5],sum[N+5];bool v[N+5];
map<LL,int>F;
inline int Pow(int a,LL b){int s=1;for(;b;b>>=1,a=1ll*a*a%mod) if(b&1) s=1ll*s*a%mod;return s;}
void Prime(const int N){
int m=0;sum[1]=1;
for(int i=2;i<=N;i++){
if(!v[i]) p[++m]=i,sum[i]=-i;
for(int j=1,k;j<=m&&(k=i*p[j])<=N;j++){
v[k]=1; if(i%p[j]==0) break;
sum[k]=1ll*sum[i]*sum[p[j]]%mod;
}
}
for(int i=1;i<=N;i++) sum[i]=(sum[i]+sum[i-1])%mod;
}
inline int calc(LL n){return ((9*n%mod-1)*Pow(10,n+1)%mod+10)*inv81%mod;}
inline int S2(LL n){n%=mod;return (n*(n+1)>>1)%mod;}
int Sum(LL n){
if(n<=N) return sum[n];
if(F.count(n)) return F[n];
int ret=1;
for(LL i=2,j,k,pre=1,now;i<=n;i=j+1,pre=now)//没有递归!!!
j=n/(k=n/i),ret=(ret-1ll*((now=S2(j))-pre)*(k<=N?sum[k]:F[k]))%mod;
return F[n]=ret;
}
int main()
{
freopen("simple.in","r",stdin);
freopen("simple.out","w",stdout);
scanf("%lld",&n),Prime(min(1ll*N,n));
int ans=0;
for(LL i=1,j;i<=n;i=j+1)
j=n/(n/i),ans=(ans+1ll*(Sum(j)-Sum(i-1))*calc(n/i))%mod;
printf("%d\n",(ans+mod)%mod);
}