OpenJDK16 ZGC 源码分析

本文详细介绍了ZGC(Z Garbage Collector)的设计思想和工作原理,包括其分页管理、颜色指针、多视图映射以及对象分配策略。ZGC通过并发标记和对象迁移,支持大内存并保持低延迟,是Java内存管理的一大进步。文章还探讨了ZGC如何利用读屏障和colored pointer实现并发安全性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

动手点关注 干货不迷路 👆

概览

ZGC 在 JDK11 中作为实验性功能引入后,已经经过了 5 个版本的演进,目前较之前版本有了较大的变化。本文将分析 ZGC 的设计思想和原理。

ZGC 主要设计理念如下:

  • ZGC 为了支持 TB 级内存,采用了基于 Page 的分页管理(类似于 G1 的 Region)。

  • 同时,为了加快内存访问速度,快速的进行并发标记和 relocate,ZGC 新引入了 Color Pointers;Color Pointers 与 Shenandoah GC 使用的 Brooks Pointers 机制不同,依赖内核提供的多视图映射,因此仅能支持部分操作系统的 64 位版本,适用性不如 Shenandoah GC,同时也无法支持指针压缩 CompressedOops。

  • 另外,为了高效内存管理,设计了两级内存管理系统。

内存管理

指针结构

zGlobals_x86.cpp

// Address Space & Pointer Layout 3
// --------------------------------
//
//  +--------------------------------+ 0x00007FFFFFFFFFFF (127TB)
//  .                                .
//  .                                .
//  .                                .
//  +--------------------------------+ 0x0000500000000000 (80TB)
//  |         Remapped View          |
//  +--------------------------------+ 0x0000400000000000 (64TB)
//  .                                .
//  +--------------------------------+ 0x0000300000000000 (48TB)
//  |         Marked1 View           |
//  +--------------------------------+ 0x0000200000000000 (32TB)
//  |         Marked0 View           |
//  +--------------------------------+ 0x0000100000000000 (16TB)
//  .                                .
//  +--------------------------------+ 0x0000000000000000
//
//   6               4  4  4 4
//   3               8  7  4 3                                               0
//  +------------------+----+-------------------------------------------------+
//  |00000000 00000000 |1111|1111 11111111 11111111 11111111 11111111 11111111|
//  +------------------+----+-------------------------------------------------+
//  |                  |    |
//  |                  |    * 43-0 Object Offset (44-bits, 16TB address space)
//  |                  |
//  |                  * 47-44 Metadata Bits (4-bits)  0001 = Marked0      (Address view 16-32TB)
//  |                                                  0010 = Marked1      (Address view 32-48TB)
//  |                                                  0100 = Remapped     (Address view 64-80TB)
//  |                                                  1000 = Finalizable  (Address view N/A)
//  |
//  * 63-48 Fixed (16-bits, always zero)
//
  • ZGC 指针布局有三种方式,分别用于支持 4TB、8TB、16TB 的堆空间,以上代码用于为 layout 3 支持 16TB 的布局;

  • 43-0 bit 对象地址;

  • 47-44 对象视图,分为三种对象视图:

    • Marked0、Marked1

    • Remapped

  • x86 和 aarch64 架构下最多仅支持 48 位指针,主要是因为硬件限制。通常为了节约成本,64 位处理器地址线一般仅 40-50 条,因此寻址范围远不及 64 位的理论值。

多视图

ZGC 将同一段物理内存映射到 3 个不同的虚拟内存视图,分别为 Marked0、Marked1、Remapped,这即是 ZGC 中的 Color Pointers,通过 Color Pointers 区分不同的 GC 阶段。

映射

ZGC 的多视图映射依赖于内核提供的 mmap 方法,具体代码如下

zPhysicalMemory.hpp, zPhysicalMemory.cpp, zPhysicalMemoryBacking_linux.cpp

// 物理内存管理类
class ZPhysicalMemory {
private:
  ZArray<ZPhysicalMemorySegment> _segments;

  void insert_segment(int index, uintptr_t start, size_t size, bool committed);
  void replace_segment(int index, uintptr_t start, size_t size, bool committed);
  void remove_segment(int index);

public:
  ZPhysicalMemory();
  ZPhysicalMemory(const ZPhysicalMemorySegment& segment);
  ZPhysicalMemory(const ZPhysicalMemory& pmem);
  const ZPhysicalMemory& operator=(const ZPhysicalMemory& pmem);

  bool is_null() const;
  size_t size() const;

  int nsegments() const;
  const ZPhysicalMemorySegment& segment(int index) const;

  void add_segments(const ZPhysicalMemory& pmem);
  void remove_segments();

  void add_segment(const ZPhysicalMemorySegment& segment);
  bool commit_segment(int index, size_t size);
  bool uncommit_segment(int index, size_t size);

  ZPhysicalMemory split(size_t size);
  ZPhysicalMemory split_committed();
};

// 将三个虚拟内存视图映射到同一物理内存
// 在JDK14中增加了对于ZVerifyViews JVM参数的支持(https://bugs.openjdk.java.net/browse/JDK-8232604)
void ZPhysicalMemoryManager::map(uintptr_t offset, const ZPhysicalMemory& pmem) const {
  const size_t size = pmem.size();

  if (ZVerifyViews) {
    // Map good view
    map_view(ZAddress::good(offset), pmem);
  } else {
    // Map all views
    map_view(ZAddress::marked0(offset), pmem);
    map_view(ZAddress::marked1(offset), pmem);
    map_view(ZAddress::remapped(offset), pmem);
  }

  nmt_commit(offset, size);
}

void ZPhysicalMemoryManager::map_view(uintptr_t addr, const ZPhysicalMemory& pmem) const {
  size_t size = 0;

  // 逐个映射物理内存
  // ZGC中使用segment管理物理内存,后续文章将详细介绍
  for (int i = 0; i < pmem.nsegments(); i++) {
    const ZPhysicalMemorySegment& segment = pmem.segment(i);
    _backing.map(addr + size, segment.size(), segment.start());
    size += segment.size();
  }

  // Setup NUMA interleaving for large pages
  if (ZNUMA::is_enabled() && ZLargePages::is_explicit()) {
    // To get granule-level NUMA interleaving when using large pages,
    // we simply let the kernel interleave the memory for us at page
    // fault time.
    os::numa_make_global((char*)addr, size);
  }
}

// 最终对于map的调用
// 对于linux系统,调用mmap进行映射
void ZPhysicalMemoryBacking::map(uintptr_t addr, size_t size, uintptr_t offset) const {
  // 可读、可写、修改共享
  // 如果参数start所指的地址无法成功建立映射时,则放弃映射,不对地址做修正。
  const void* const res = mmap((void*)addr, size, PROT_READ|PROT_WRITE, MAP_FIXED|MAP_SHARED, _fd, offset);
  if (res == MAP_FAILED) {
    ZErrno err;
    fatal("Failed to map memory (%s)", err.to_string());
  }
}
  • ZPhysicalMemory 是 ZGC 对于物理内存管理的抽象,收敛 ZGC 对于物理内存的访问。

  • ZPhysicalMemory 底层根据宿主操作系统调用不同的 ZPhysicalMemoryBacking 实现,进行多视图映射。

物理内存管理

ZGC 对于物理内存的管理主要在 ZPhysicalMemory 类中,此处需要注意,ZGC 上下文中的物理内存,不是真正的物理内存,而是操作系统虚拟内存。

5dc23da23ecfb3a94dc208cda2cfe80b.png

ZGC 中管理物理内存的基本单位是 segment。segment 默认与 small page size 一样,都是 2MB。引入 segment 是为了避免频繁的申请和释放内存的系统调用,一次申请 2MB,当 segment 空闲时,将加入空闲列表,等待之后重复使用。

zGlobals_x86.hpp

// 默认page size偏移量
const size_t ZPlatformGranuleSizeShift = 21; // 2MB
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值