
字节跳动基础架构团队基于火山引擎机器学习平台 Clever 及其丰富的行业落地经验,推出开源项目 Klever,以工程化的方式降低智能技术落地门槛,助力企业快速打造智能业务。
项目地址 | kleveross
近年来,智能技术不论是在学术界还是工业界都取得了突破性进展。机器学习、深度学习开始在各行各业扮演重要角色:业务上,帮助企业优化运营、提高效率、改善客户体验;管理上,参与后台自动化运营,完成数据处理和提取等任务。
然而,随着越来越多企业开始尝试落地智能技术,一个严峻的问题也逐渐暴露出来:从算法技术选型到模型最终上线,这个过程涉及大量工程化任务对接。算法工程师们掌握着丰富的先进算法,但算法能力的实现通常离不开底层计算资源和系统架构的支撑,如何实现从开发、模型训练、模型管理、模型服务全链路高效、敏捷、自动化管理,进而实现企业的智能化转型,仍是当前智能技术领域亟待解决的问题之一。
开源机器学习平台 Klever
针对上述问题,字节跳动基础架构团队多年来就智能技术的工程化问题进行了长期探索。
2020 年,字节跳动旗下的数字服务与智能科技品牌火山引擎携我们的技术实践落地国内某金融机构,使其模型上线效率提升了 10 倍,GPU 资源使用率提高 50%,自主创新能力大幅提高。
这类落地最佳实践让我们深刻认识到了智能技术对企业业务持续增长的重要性,也让我们了解到缺乏工程化工具已经成为当下企业应用智能技术的一大掣肘。为此,我们决定推出开源机器学习平台 Klever。
Klever 是一个支持 OCI(Open Container Initiative)标准存储训练模型、支持在线模型服务部署的云原生机器学习平台。算法科学家可以使用 Klever 进行模型管理、模型解析、模型转换、模型服务,它已经解决了智能技术落地流程中的如下问题:
- 模型的管理和分发
- 模型解析和转换
- 在线模型服务部署和管理
同时,基于字节跳动在机器学习和云原生开源社区的技术积累,Klever 提供强大、通用的开源技术标准,方便企业无缝迁移线上应用。未来,它还将进一步支持模型开发、模型训练等一系列智能模型开发和管理流程,降低技术落地门槛,助力企业快速打造智能业务、全面实现智能化转型。
Klever 概述
系统架构
Klever 有四个自研发的组件,并依赖

字节跳动基础架构团队推出Klever,一个基于云原生的开源机器学习平台,帮助企业自动化管理模型从仓库到服务的全过程,提升效率并降低智能技术落地门槛。
最低0.47元/天 解锁文章
2万+





