题意
设d(x)d(x)d(x)为xxx的约数个数,求∑i=1n∑j=1md(ij)\sum_{i=1}^{n}\sum_{j=1}^{m}d(ij)∑i=1n∑j=1md(ij)。
题解
首先有个公式:d(ij)=∑x∣i∑y∣j[gcd(x,y)=1]d(ij)=\sum_{x|i}\sum_{y|j}[gcd(x,y)=1]d(ij)=x∣i∑y∣j∑[gcd(x,y)=1]
证明大致如下:
先考虑这种情况:i=pai=p^ai=pa,j=pbj=p^bj=pb:
乘积ijijij的约数个数为a+b+1a+b+1a+b+1个
而∑x∣i∑y∣j[gcd(x,y)=1]\sum_{x|i}\sum_{y|j}[gcd(x,y)=1]∑x∣i∑y∣j[gcd(x,y)=1]也为a+b+1a+b+1a+b+1,因为方案为让iii取000,jjj取[0,b][0,b][0,b],或iii取[0,a][0,a][0,a],jjj取000.
然后考虑把每一位合起来,也是一个道理,iii的次数分别取0  or  [0,ai]0 \;\text{or}\;[0,a_i]0or[0,ai],jjj的次数分别取0  or  [0,bi]0 \;\text{or}\;[0,b_i]0or[0,bi]
然后开始推导本题解法:
∑i=1n∑j=1m∑x∣i∑y∣j[gcd(x,y)=1]\sum_{i=1}^{n}\sum_{j=1}^{m}\sum_{x|i}\sum_{y|j}[gcd(x,y)=1]∑i=1n∑j=1m∑x∣i∑y∣j[gcd(x,y)=1]
先枚举因数:
∑x=1n∑y=1m⌊mx⌋⌊ny⌋[gcd(x,y)=1]\sum_{x=1}^n\sum_{y=1}^m\lfloor\frac{m}{x}\rfloor\lfloor\frac{n}{y}\rfloor[gcd(x,y)=1]∑x=1n∑y=1m⌊xm⌋⌊yn⌋[gcd(x,y)=1]
令f(u)=∑x=1n∑y=1m⌊mx⌋⌊ny⌋[gcd(x,y)=u]f(u)=\sum_{x=1}^n\sum_{y=1}^m\lfloor\frac{m}{x}\rfloor\lfloor\frac{n}{y}\rfloor[gcd(x,y)=u]f(u)=∑x=1n∑y=1m⌊xm⌋⌊yn⌋[gcd(x,y)=u]
因此令:
g(u)=∑u∣df(d)=∑x=1n∑y=1m⌊mx⌋⌊ny⌋[u∣gcd(x,y)]g(u)=\sum_{u|d}f(d)=\sum_{x=1}^n\sum_{y=1}^m\lfloor\frac{m}{x}\rfloor\lfloor\frac{n}{y}\rfloor[u|gcd(x,y)]g(u)=u∣d∑f(d)=x=1∑ny=1∑m⌊xm⌋⌊yn⌋[u∣gcd(x,y)]
把uuu提出来:
g(u)=∑u∣df(d)=∑x=1⌊nu⌋∑y=1⌊mu⌋⌊mxu⌋⌊nyu⌋g(u)=\sum_{u|d}f(d)=\sum_{x=1}^{\lfloor\frac{n}{u}\rfloor}\sum_{y=1}^{\lfloor\frac{m}{u}\rfloor}\lfloor\frac{m}{xu}\rfloor\lfloor\frac{n}{yu}\rfloorg(u)=u∣d∑f(d)=x=1∑⌊un⌋y=1∑⌊um⌋⌊xum⌋⌊yun⌋
令sum(n)=∑i=1n⌊ni⌋sum(n)=\sum_{i=1}^n \lfloor\frac{n}{i}\rfloorsum(n)=∑i=1n⌊in⌋,则上式:
g(u)=sum(⌊nu⌋)sum(⌊mu⌋)g(u)=sum(\lfloor\frac{n}{u}\rfloor)sum(\lfloor\frac{m}{u}\rfloor)g(u)=sum(⌊un⌋)sum(⌊um⌋)
然后莫比乌斯反演:
因为g(u)=∑u∣df(d)g(u)=\sum_{u|d}f(d)g(u)=u∣d∑f(d)
所以f(u)=∑u∣dμ(du)g(d)f(u)=\sum_{u|d}\mu(\frac{d}{u})g(d)f(u)=u∣d∑μ(ud)g(d)
f(u)=∑u∣dμ(du)g(d)f(u)=\sum_{u|d}\mu(\frac{d}{u})g(d)f(u)=u∣d∑μ(ud)g(d)
所以f(1)=∑d=1nμ(d)g(d)f(1)=\sum_{d=1}^n\mu(d)g(d)f(1)=d=1∑nμ(d)g(d)
f(1)=∑d=1nμ(d)sum(⌊nd⌋)sum(⌊md⌋)f(1)=\sum_{d=1}^n\mu(d)sum(\lfloor\frac{n}{d}\rfloor)sum(\lfloor\frac{m}{d}\rfloor)f(1)=d=1∑nμ(d)sum(⌊dn⌋)sum(⌊dm⌋)
于是O(nn)O(n\sqrt n)O(nn)预处理sumsumsum,查询O(n)O(\sqrt n)O(n)。
#include <cstdio>
#include <ios>
typedef long long LL;
const int N = 5e4 + 10;
LL sum[N], mu[N], mus[N];
int pr[N], tot;
bool tag[N];
LL calc1(int n) {
LL ans = 0;
for(int i = 1, j; i <= n; i = j + 1) {
j = n / (n / i);
ans += n / i * 1ll * (j - i + 1);
}
return ans;
}
void init(int n) {
for(int i = 1; i <= n; i ++) sum[i] = calc1(i);
mu[1] = mus[1] = tag[1] = 1;
for(int i = 2; i <= n; i ++) {
if(!tag[i]) {
pr[++ tot] = i;
mu[i] = -1;
}
for(int j = 1; j <= tot && i * pr[j] <= n; j ++) {
tag[i * pr[j]] = 1;
if(i % pr[j] == 0) {
mu[i * pr[j]] = 0;
break ;
}
mu[i * pr[j]] = - mu[i];
}
mus[i] = mus[i - 1] + mu[i];
}
}
LL calc2(int n, int m) {
LL ans = 0;
for(int i = 1, j; i <= n; i = j + 1) {
j = std :: min(n / (n / i), m / (m / i));
ans += (mus[j] - mus[i - 1]) * sum[n / i] * sum[m / i];
}
return ans;
}
int main() {
init(50000);
int t, n, m;
for(scanf("%d", &t); t --; ) {
scanf("%d%d", &n, &m);
if(n > m) n ^= m ^= n ^= m;
printf("%lld\n", calc2(n, m));
}
return 0;
}