「Luogu P2398」GCD SUM「莫比乌斯反演」

题目传送门

题意

ni=1nj=1gcd(i,j) ∑ i = 1 n ∑ j = 1 n g c d ( i , j ) n<=105 n <= 10 5

题解

i=1nj=1ngcd(i,j) ∑ i = 1 n ∑ j = 1 n g c d ( i , j )

=d=1ni=1nj=1n[gcd(i,j)=d] = ∑ d = 1 n ∑ i = 1 n ∑ j = 1 n [ g c d ( i , j ) = d ]

=d=1ndi=1ndj=1nd[gcd(i,j)=1] = ∑ d = 1 n d ∑ i ′ = 1 ⌊ n d ⌋ ∑ j ′ = 1 ⌊ n d ⌋ [ g c d ( i ′ , j ′ ) = 1 ]

=d=1ndi=1ndj=1nde(gcd(i,j)) = ∑ d = 1 n d ∑ i ′ = 1 ⌊ n d ⌋ ∑ j ′ = 1 ⌊ n d ⌋ e ( g c d ( i ′ , j ′ ) )

=d=1ndi=1ndj=1ndd|gcd(i,j)μ(d) = ∑ d = 1 n d ∑ i ′ = 1 ⌊ n d ⌋ ∑ j ′ = 1 ⌊ n d ⌋ ∑ d ′ | g c d ( i ′ , j ′ ) μ ( d ′ )

=d=1ndi=1ndj=1ndd|i,d|jμ(d) = ∑ d = 1 n d ∑ i ′ = 1 ⌊ n d ⌋ ∑ j ′ = 1 ⌊ n d ⌋ ∑ d ′ | i ′ , d ′ | j ′ μ ( d ′ )

=d=1ndd=1nμ(d)i=1,d|indj=1,d|jnd1 = ∑ d = 1 n d ∑ d ′ = 1 n μ ( d ′ ) ∑ i ′ = 1 , d ′ | i ′ ⌊ n d ⌋ ∑ j ′ = 1 , d ′ | j ′ ⌊ n d ⌋ 1

=d=1ndd=1nμ(d)i=1nddj=1ndd1 = ∑ d = 1 n d ∑ d ′ = 1 n μ ( d ′ ) ∑ i ′ = 1 ⌊ n d d ′ ⌋ ∑ j ′ = 1 ⌊ n d d ′ ⌋ 1

=d=1nd=1nid(d)μ(d)nddndd = ∑ d = 1 n ∑ d ′ = 1 n i d ( d ) μ ( d ′ ) ⌊ n d d ′ ⌋ ⌊ n d d ′ ⌋

=k=1nd=1nid(d)μ(kd)nknk = ∑ k = 1 n ∑ d = 1 n i d ( d ) μ ( ⌊ k d ⌋ ) ⌊ n k ⌋ ⌊ n k ⌋

=k=1n(idμ)(k)nknk = ∑ k = 1 n ( i d ∗ μ ) ( k ) ⌊ n k ⌋ ⌊ n k ⌋

=k=1nϕ(k)nknk = ∑ k = 1 n ϕ ( k ) ⌊ n k ⌋ ⌊ n k ⌋

然后可以线性筛 O(n) O ( n ) 预处理 ϕ ϕ ,然后通过数论分块 O(n) O ( n ) 计算答案.

#include <iostream>
#include <cstring>
#include <cstdio>
using namespace std;

typedef long long LL;

const int MAXN = 100100;

bool tag[MAXN];
int n, pr[MAXN], cnt, phi[MAXN];
LL phis[MAXN], ans;

void sieve(int n) { //线性筛模版 
    memset(tag, 1, sizeof tag); tag[1] = false;
    phi[1] = phis[1] = 1;
    for(int i = 2; i <= n; i ++) {
        if(tag[i]) {
            pr[++ cnt] = i;
            phi[i] = i - 1;
        }
        for(int j = 1; j <= cnt && i * pr[j] <= n; j ++) {
            tag[i * pr[j]] = false;
            if(i % pr[j] == 0) {
                phi[i * pr[j]] = phi[i] * pr[j];
                break ;
            }
            phi[i * pr[j]] = phi[i] * (pr[j] - 1);
        }
        phis[i] = phis[i - 1] + phi[i]; //phis为欧拉函数的前缀和. 
    }
}

int main() {
    scanf("%d", &n);
    sieve(n);
    for(int i = 1, j; i <= n; i = j + 1) {
        j = n / (n / i); //j为当前块的右端点,i为左端点 
        ans += (n / i) * 1ll * (n / i) * (phis[j] - phis[i - 1]);
    }
    printf("%lld\n", ans);
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值