Description
The thief has found himself a new place for his thievery again. There is only one entrance to this area, called the “root.” Besides the root, each house has one and only one parent house. After a tour, the smart thief realized that “all houses in this place forms a binary tree”. It will automatically contact the police if two directly-linked houses were broken into on the same night.
Determine the maximum amount of money the thief can rob tonight without alerting the police.
Example 1:
Input: [3,2,3,null,3,null,1]
3
/ \
2 3
\ \
3 1
Output: 7
Explanation: Maximum amount of money the thief can rob = 3 + 3 + 1 = 7.
Example 2:
Input: [3,4,5,1,3,null,1]
3
/ \
4 5
/ \ \
1 3 1
Output: 9
Explanation: Maximum amount of money the thief can rob = 4 + 5 = 9.
Solution
给一棵二叉树,只能隔一个抢一个,问最多能抢到多少钱。
Approach 1: Greedy method. Since we want to get the most money start from root, we also want to do it at left subtree and right subtree. Thus, we could solve this problem recursively.
So the termination codition could be root == null, since this path is end. For the recurrence relation, it is depend on root. If rob root, we have to rod grandchild. If not, just child. So we could get the recursion function.
But this solution is quite slow. It runs 771ms.
/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode(int x) { val = x; }
* }
*/
class Solution {
public int rob(TreeNode root) {
if (root == null){
return 0;
}
int val = 0;
if (root.left != null){
val += rob(root.left.left) + rob(root.left.right);
}
if (root.right != null){
val += rob(root.right.left) + rob(root.right.right);
}
return Math.max(val + root.val, rob(root.left) + rob(root.right));
}
}
Time Complexity: O(2^n)
Space Complexity: O(n)
Approach 2: Dynamic programming. Because we have to calculate overlaping value, we could use dynamic programming to get easier approach. Use a hash map to record the results for visited subtrees.
Code
/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode(int x) { val = x; }
* }
*/
class Solution {
public int rob(TreeNode root) {
return robHelper(root, new HashMap<TreeNode, Integer>());
}
private int robHelper(TreeNode node, Map<TreeNode, Integer> map){
if (node == null){
return 0;
}
if (map.containsKey(node)){
return map.get(node);
}
int val = 0;
if (node.left != null){
val += robHelper(node.left.left, map) + robHelper(node.left.right, map);
}
if (node.right != null){
val += robHelper(node.right.left, map) + robHelper(node.right.right, map);
}
val = Math.max(val + node.val, robHelper(node.left, map) + robHelper(node.right, map));
map.put(node, val);
return val;
}
}
Time Complexity: O(n)
Space Complexity: O(n)
Review
Approach 3: We just have two scenarios, so we could simply using a array with two element to store the output of each node.
/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode(int x) { val = x; }
* }
*/
class Solution {
public int rob(TreeNode root) {
int[] res = robHelper(root);
return Math.max(res[0], res[1]);
}
private int[] robHelper(TreeNode node){
if (node == null){
return new int[2];
}
int[] left = robHelper(node.left);
int[] right = robHelper(node.right);
int[] res = new int[2];
res[0] = Math.max(left[0], left[1]) + Math.max(right[0], right[1]);
res[1] = node.val + left[0] + right[0];
return res;
}
}

探讨了一个经典的二叉树遍历问题:如何在不触动报警的情况下,从二叉树结构的房屋中抢夺最大金额。文章提供了三种解决方案,包括贪心算法、动态规划以及简化版动态规划,详细解释了每种方法的实现思路与复杂度。
427

被折叠的 条评论
为什么被折叠?



