697. Degree of an Array

本文介绍了一种算法,用于找出给定数组中具有相同度(即最大元素频率)的最短连续子序列。通过两次遍历并使用哈希映射,文章详细解释了如何确定子序列的长度,并提供了具体示例。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Description

Given a non-empty array of non-negative integers nums, the degree of this array is defined as the maximum frequency of any one of its elements.

Your task is to find the smallest possible length of a (contiguous) subarray of nums, that has the same degree as nums.

Example 1:
Input: [1, 2, 2, 3, 1]
Output: 2
Explanation:
The input array has a degree of 2 because both elements 1 and 2 appear twice.
Of the subarrays that have the same degree:
[1, 2, 2, 3, 1], [1, 2, 2, 3], [2, 2, 3, 1], [1, 2, 2], [2, 2, 3], [2, 2]
The shortest length is 2. So return 2.
Example 2:
Input: [1,2,2,3,1,4,2]
Output: 6
Note:

nums.length will be between 1 and 50,000.
nums[i] will be an integer between 0 and 49,999.

Problem URL


Solution

一个数组中出现最多的元素的频率称为数组的度,找到数组中包括了这个度的连续子序列的最短长度。

We use a hash map to contain the frequence of each element in the array, then get the max frequence by a for loop.

After get the max frequence, we iterate map.keySet() for another time, find the element who have the max frequence. Then using two pointers to search from head and tail, and get the subarray, count it length.

Code
class Solution {
    public int findShortestSubArray(int[] nums) {
        if(nums == null || nums.length == 0){
            return 0;
        }
        Map<Integer, Integer> map = new HashMap<>();
        for (int n : nums){
            map.put(n, map.getOrDefault(n, 0) + 1);
        }
        int max = Integer.MIN_VALUE;
        for (Integer n : map.keySet()){
            max = Math.max(max, map.get(n));
        }
        int res = Integer.MAX_VALUE;
        for (Integer n : map.keySet()){
            if (map.get(n) == max){
                int i = 0, j = nums.length - 1;
                while (i < j){
                    if (nums[i] == n && nums[j] == n){
                        break;
                    }
                    if (nums[i] != n){
                        i++;
                    }
                    if (nums[j] != n){
                        j--;
                    }
                }
                res = Math.min(res, j - i + 1);
            }
        }
        return res;
    }
}

Time Complexity: O(n^2)
Space Complexity: O(n)


Review

Mathwork

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值