491. Increasing Subsequences

本文介绍了一种使用递归辅助函数查找整数数组中所有不同递增子序列的方法。通过避免重复情况并确保子序列长度至少为2,该算法有效地解决了问题。适用于长度不超过15的数组,范围在[-100,100]之间。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Description

Given an integer array, your task is to find all the different possible increasing subsequences of the given array, and the length of an increasing subsequence should be at least 2 .

Example:
Input: [4, 6, 7, 7]
Output: [[4, 6], [4, 7], [4, 6, 7], [4, 6, 7, 7], [6, 7], [6, 7, 7], [7,7], [4,7,7]]
Note:
The length of the given array will not exceed 15.
The range of integer in the given array is [-100,100].
The given array may contain duplicates, and two equal integers should also be considered as a special case of increasing sequence.

Problem URL


Solution

给一个整数数组,找到这个数组中所有的递增子序列。

Using a helper function to recursively find all the subsequence. If the subquence’s length is longer than 1, add it into result list. Then use a for loop to find subsequences. A hash set is used to avoid duplicate circumstance.

Code
class Solution {
    private List<List<Integer>> res;
    public List<List<Integer>> findSubsequences(int[] nums) {
        res = new ArrayList<>();
        helper(new LinkedList<Integer>(), 0, nums);
        return res;
    }
    
    private void helper(LinkedList<Integer> sequence, int index, int[] nums){
        if (sequence.size() > 1){
            res.add(new LinkedList<Integer>(sequence));
        }
        Set<Integer> used = new HashSet<>();
        for (int i = index; i < nums.length; i++){
            if (used.contains(nums[i])){
                continue;
            }
            if (sequence.isEmpty() || nums[i] >= sequence.peekLast()){
                used.add(nums[i]);
                sequence.add(nums[i]);
                helper(sequence, i + 1, nums);
                sequence.remove(sequence.size() - 1);
            }
        }
    }
}

Time Complexity:
Space Complexity:


Review
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值