####问题描述
A robot is located at the top-left corner of a m x n grid (marked ‘Start’ in the diagram below).
The robot can only move either down or right at any point in time. The robot is trying to reach the bottom-right corner of the grid (marked ‘Finish’ in the diagram below).
How many possible unique paths are there?
Above is a 7 x 3 grid. How many possible unique paths are there?
Note: m and n will be at most 100.
Example 1:
Input: m = 3, n = 2
Output: 3
Explanation:
From the top-left corner, there are a total of 3 ways to reach the bottom-right corner:
- Right -> Right -> Down
- Right -> Down -> Right
- Down -> Right -> Right
Example 2:
Input: m = 7, n = 3
Output: 28
题目链接:
####思路分析
m×n的地图,机器人智能向下或者向右走,计算不同的从左上到右下的路径。
简单的动态规划问题,建一个二维数组,到达每一个位置的路径数等于它上面的位置加左边的位置。如果是在边界上,则为零。res[0][0] = 1,顺序遍历计算返回finish位置的值即可。
####代码
java
class Solution {
public int uniquePaths(int m, int n) {
int[][] dp = new int[m + 1][n + 1];
dp[1][1] = 1;
for (int i = 1; i <= m; i++){
for (int j = 1; j <= n; j++){
dp[i][j] += dp[i - 1][j] + dp[i][j - 1];
}
}
return dp[m][n];
}
}
class Solution {
public:
int uniquePaths(int m, int n) {
vector<vector<int>> res(m, vector<int>(n, 0));
res[0][0] = 1;
for (int i = 0; i < m; i++){
for (int j = 0; j < n; j++){
int left = j - 1 >= 0 ? res[i][j - 1] : 0;
int up = i - 1 >= 0 ? res[i - 1][j] : 0;
res[i][j] = res[i][j] + left + up;
}
}
return res[m - 1][n - 1];
}
};
时间复杂度:
O
(
m
×
n
)
O(m×n )
O(m×n)
空间复杂度:
O
(
m
×
n
)
O(m×n)
O(m×n)
####反思
很简单的DP,空间换时间的思想体现的淋漓尽致。