62. Unique Paths

####问题描述
A robot is located at the top-left corner of a m x n grid (marked ‘Start’ in the diagram below).

The robot can only move either down or right at any point in time. The robot is trying to reach the bottom-right corner of the grid (marked ‘Finish’ in the diagram below).

How many possible unique paths are there?
示意图

Above is a 7 x 3 grid. How many possible unique paths are there?

Note: m and n will be at most 100.

Example 1:

Input: m = 3, n = 2
Output: 3
Explanation:
From the top-left corner, there are a total of 3 ways to reach the bottom-right corner:

  1. Right -> Right -> Down
  2. Right -> Down -> Right
  3. Down -> Right -> Right

Example 2:

Input: m = 7, n = 3
Output: 28

题目链接:

####思路分析
m×n的地图,机器人智能向下或者向右走,计算不同的从左上到右下的路径。

简单的动态规划问题,建一个二维数组,到达每一个位置的路径数等于它上面的位置加左边的位置。如果是在边界上,则为零。res[0][0] = 1,顺序遍历计算返回finish位置的值即可。
####代码
java

class Solution {
    public int uniquePaths(int m, int n) {
        int[][] dp = new int[m + 1][n + 1];
        dp[1][1] = 1;
        for (int i = 1; i <= m; i++){
            for (int j = 1; j <= n; j++){
                dp[i][j] += dp[i - 1][j] + dp[i][j - 1];
            }
        }
        return dp[m][n];     
    }
}
class Solution {
public:
    int uniquePaths(int m, int n) {
        vector<vector<int>> res(m, vector<int>(n, 0));
        res[0][0] = 1;
        for (int i = 0; i < m; i++){
            for (int j = 0; j < n; j++){
                int left = j - 1 >= 0 ? res[i][j - 1] : 0;
                int up = i - 1 >= 0 ? res[i - 1][j] : 0;
                res[i][j] = res[i][j] + left + up;
            }
        }
        return res[m - 1][n - 1];
    }
};

时间复杂度: O ( m × n ) O(m×n ) O(m×n)
空间复杂度: O ( m × n ) O(m×n) O(m×n)


####反思
很简单的DP,空间换时间的思想体现的淋漓尽致。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值