问题描述
Given a non negative integer number num. For every numbers i in the range 0 ≤ i ≤ num calculate the number of 1’s in their binary representation and return them as an array.
Example:
For num = 5 you should return [0,1,1,2,1,2].
Follow up:
- It is very easy to come up with a solution with run time O(n*sizeof(integer)). But can you do it in linear time O(n) /possibly in a single pass?
- Space complexity should be O(n).
- Can you do it like a boss? Do it without using any builtin function like __builtin_popcount in c++ or in any other language.
Credits:
Special thanks to @ syedee for adding this problem and creating all test cases.
思路分析
给一个非零的数,输出从0到这个数的二进制表示中分别有多少个1。
使用i&(i-1)的操作可以使i中的1的个数减1,动态规划的思想,再加上1就可以了,非常巧妙,我自己想不出。
代码
class Solution {
public:
vector<int> countBits(int num) {
vector<int> res(num + 1, 0);
for (int i = 1; i <= num; i++){
res[i] = res[(i-1)&i] + 1;
}
return res;
}
};
时间复杂度:
O(n)
O
(
n
)
空间复杂度:
O(n)
O
(
n
)
反思
真的很巧妙啊