问题描述
Given a binary search tree (BST), find the lowest common ancestor (LCA) of two given nodes in the BST.
According to the definition of LCA on Wikipedia: “The lowest common ancestor is defined between two nodes v and w as the lowest node in T that has both v and w as descendants (where we allow a node to be a descendant of itself).”
_______6______
/ \
___2__ ___8__
/ \ / \
0 _4 7 9
/ \
3 5
For example, the lowest common ancestor (LCA) of nodes 2 and 8 is 6. Another example is LCA of nodes 2 and 4 is 2, since a node can be a descendant of itself according to the LCA definition.
思路分析
给一个二叉查找树和它的两个结点,找到两个结点的最低共同祖先。根据二叉搜索树的性质,左子树元素小于root小于右子树元素,而且左右子树都是二叉搜索树。可以递归查找,找到将两个结点分到左右子树的那时的root结点即可。
代码
递归
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode(int x) : val(x), left(NULL), right(NULL) {}
* };
*/
class Solution {
public:
TreeNode* lowestCommonAncestor(TreeNode* root, TreeNode* p, TreeNode* q) {
if (p->val < root->val && q->val < root->val)
return lowestCommonAncestor(root->left, p, q);
if (p->val > root->val && q->val > root->val)
return lowestCommonAncestor(root->right, p, q);
return root;
}
};
时间复杂度:
O(logn)
空间复杂度:
O(1)
反思
也可以不递归,用一个指针来便利即可。
class Solution {
public:
TreeNode* lowestCommonAncestor(TreeNode* root, TreeNode* p, TreeNode* q) {
TreeNode* cur = root;
while (true) {
if (p -> val < cur -> val && q -> val < cur -> val)
cur = cur -> left;
else if (p -> val > cur -> val && q -> val > cur -> val)
cur = cur -> right;
else return cur;
}
}
};