Spark GraphX图计算入门基础

spark 系列

Spark 核心原理及运行架构

Spark RDD详解

Spark 常用算子大全

Spark SQL 详解

Spark GraphX 图计算入门基础



前言

前面几篇博客已经为大家介绍了 Spark 的基础框架、RDD、核心 SparkCore 和 Spark SQL常用组件。本篇博客将为大家详细介绍了 Spark 另一个重要的内置模块 Spark GraphX 。这是Spark 图计算的核心API。


Spark GraphX 简介

GraphX应用背景

Spark GraphX是一个分布式图处理框架,它是基于Spark平台提供对图计算和图挖掘简洁易用的而丰富的接口,极大的方便了对分布式图处理的需求。

为什么需要图计算?

  • 许多大数据以大规模图或网络的形式呈现
  • 许多非图结构的大数据,常会被转换为图模型进行分析
  • 图数据结构很好地表达了数据之间的关联性

正如上所说,在地图应用中寻找最短路径、网页间超链接关系和社交网络中人与人之间有很多关系链,例如Twitter、Facebook、微博和微信等,这些都是大数据产生的地方都需要图计算,现在的图处理基本都是分布式的图处理,而并非单机处理。Spark GraphX由于底层是基于Spark来处理的,所以天然就是一个分布式的图处理系统。

图的分布式或者并行处理其实是把图拆分成很多的子图,然后分别对这些子图进行计算,计算的时候可以分别迭代进行分阶段的计算,即对图进行并行计算。下面我们看一下图计算的简单示例:
在这里插入图片描述
从图中我们可以看出:拿到Wikipedia的文档以后,可以变成Link Table形式的视图,然后基于Link Table形式的视图可以分析成Hyperlinks超链接,最后我们可以使用PageRank(下一篇博客会详述)去分析得出Top Communities。在下面路径中的Editor Graph到Community,这个过程可以称之为Triangle Computation,这是计算三角形的一个算法,基于此会发现一个社区。从上面的分析中我们可以发现图计算有很多的做法和算法,同时也发现图和表格可以做互相的转换。

GraphX 核心API

设计GraphX时,点分割和GAS都已成熟,在设计和编码中针对它们进行了优化,并在功能和性能之间寻找最佳的平衡点。如同Spark本身,每个子模块都有一个核心抽象。GraphX的核心抽象是Resilient Distributed Property Graph,一种点和边都带属性的有向多重图。它扩展了Spark RDD的抽象,有Table和Graph两种视图,而只需要一份物理存储。两种视图都有自己独有的操作符,从而获得了灵活操作和执行效率。

在这里插入图片描述
如同Spark,GraphX的代码非常简洁。GraphX的核心代码只有3千多行,而在此之上实现的Pregel模式,只要短短的20多行。GraphX的代码结构整体如上图所示,其中大部分的实现,都是围绕Partition的优化进行的。这在某种程度上说明了点分割的存储和相应的计算优化,的确是图计算框架的重点和难点。

GraphX 特点

GraphX是Spark中用于图(e.g., Web-Graphs and Social Networks)和图并行计算(e.g., PageRank and Collaborative Filtering)的API,可以认为是GraphLab(C++)和Pregel(C++)在Spark(Scala)上的重写及优化,跟其他分布式图计算框架相比,GraphX最大的贡献是,在Spark之上提供一栈式数据解决方案,可以方便且高效地完成图计算的一整套流水作业

在这里插入图片描述
在这里插入图片描述
如上图所示,Graphx是Spark生态中的非常重要的组件,融合了图并行以及数据并行的优势,虽然在单纯的计算机段的性能相比不如GraphLab等计算框架,但是如果从整个图处理流水线的视角(图构建,图合并,最终结果的查询)看,那么性能就非常具有竞争性了。

简单来说,Spark GraphX特点如下:

  • 基于内存实现了数据的复用与快速读取
  • 通过弹性分布式属性图(Property Graph)统一了图视图与表视图
  • 与Spark Streaming、Spark SQL和Spark MLlib等无缝衔接

Spark GraphX 实现原理

两种视图

如同Spark本身,每个子模块都有一个核心抽象。GraphX通过引入Resilient Distributed Property Graph(一种点和边都带属性有向多重图)扩展了Spark RDD这种抽象数据结构,这种Property Graph拥有两种Table和Graph两种视图(及视图对应的一套API),而只有一份物理存储。两种视图都有自己独有的操作符,从而获得了灵活操作和执行效率。

在这里插入图片描述
Table视图

Table视图将图看成Vertex Property Table和Edge Property Table等的组合,这些Table继承了Spark RDD的API(fiter,map等)。

两种视图底层共用的物理数据,由RDD[Vertex-Partition]和RDD[EdgePartition]这两个RDD组成。点和边实际都不是以表Collection[tuple]的形式存储的,而是由VertexPartition/EdgePartition在内部存储一个带索引结构的分片数据块,以加速不同视图下的遍历速度。不变的索引结构在RDD转换过程中是共用的,降低了计算和存储开销。
在这里插入图片描述
Graph视图

Graph视图上包括reverse/subgraph/mapV(E)/joinV(E)/mrTriplets等操作。结合pagerank和社交网络的实例看看mrTriplets(最复杂的一个API )的用法。

图的分布式存储采用点分割模式,而且使用partitionBy方法,由用户指定不同的划分策略(PartitionStrategy)。划分策略会将边分配到各个EdgePartition,顶点Master分配到各个VertexPartition,EdgePartition也会缓存本地边关联点的Ghost副本。划分策略的不同会影响到所需要缓存的Ghost副本数量,以及每个EdgePartition分配的边的均衡程度,需要根据图的结构特征选取最佳策略。目前有EdgePartition2d、EdgePartition1d、RandomVertexCut和CanonicalRandomVertexCut这四种策略。
在这里插入图片描述
在这里插入图片描述
对Graph视图的所有操作,最终都会转换成其关联的Table视图的RDD操作来完成。这样对一个图的计算,最终在逻辑上,等价于一系列RDD的转换过程。因此,Graph最终具备了RDD的3个关键特性:Immutable、Distributed和Fault-Tolerant,其中最关键的是Immutable(不变性)。逻辑上,所有图的转换和操作都产生了一个新图;物理上,GraphX会有一定程度的不变顶点和边的复用优化,对用户透明。

存储模式

图存储模式

巨型图的存储总体上有边分割和点分割两种存储方式。

  • 边分割(Edge-Cut):每个顶点都存储一次,但有的边会被打断分到两台机器上。这样做的好处是节省存储空间;坏处是对图进行基于边的计算时,对于一条两个顶点被分到不同机器上的边来说,要跨机器通信传输数据,内网通信流量大。

  • 点分割(Vertex-Cut):每条边只存储一次,都只会出现在一台机器上。邻居多的点会被复制到多台机器上,增加了存储开销,同时会引发数据同步问题。好处是可以大幅减少内网通信量。

在这里插入图片描述
在这里插入图片描述

虽然两种方法互有利弊,但现在是点分割占上风,各种分布式图计算框架都将自己底层的存储形式变成了点分割。主要原因有以下两个。

  1. 磁盘价格下降,存储空间不再是问题,而内网的通信资源没有突破性进展,集群计算时内网带宽是宝贵的,时间比磁盘更珍贵。这点就类似于常见的空间换时间的策略。

  2. 在当前的应用场景中,绝大多数网络都是“无尺度网络”,遵循幂律分布,不同点的邻居数量相差非常悬殊。而边分割会使那些多邻居的点所相连的边大多数被分到不同的机器上,这样的数据分布会使得内网带宽更加捉襟见肘,于是边分割存储方式被渐渐抛弃了。

GraphX存储模式

Graphx借鉴PowerGraph,使用的是Vertex-Cut(点分割)方式存储图,用三个RDD存储图数据信息:

  • VertexTable(id, data):id为Vertex id,data为Edge data

  • EdgeTable(pid, src, dst, data):pid为Partion id,src为原定点id,dst为目的顶点id

  • RoutingTable(id, pid)&#

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值