torch.ones().cuda() vs. torch.ones_like() CPU利用率

文章讨论了在PyTorch中使用`torch.ones()`和`torch.ones_like()`创建张量时,后者在将结果移动到GPU时能显著节省CPU资源,减少CPU占用率高达80%。
部署运行你感兴趣的模型镜像
    1. targets = torch.ones(outputs.shape).cuda() / num_classes
    2. targets = torch.ones_like(outputs) / num_classes

ones().cuda()会消耗大量的cpu (2000 CPU%),而直接ones_like能节省至 200

您可能感兴趣的与本文相关的镜像

PyTorch 2.5

PyTorch 2.5

PyTorch
Cuda

PyTorch 是一个开源的 Python 机器学习库,基于 Torch 库,底层由 C++ 实现,应用于人工智能领域,如计算机视觉和自然语言处理

import torch import numpy as np from utils.general_utils import inverse_sigmoid, get_expon_lr_func, build_rotation from torch import nn import os import json from utils.system_utils import mkdir_p from plyfile import PlyData, PlyElement from utils.sh_utils import RGB2SH from simple_knn._C import distCUDA2 from utils.graphics_utils import BasicPointCloud from utils.general_utils import strip_symmetric, build_scaling_rotation class GaussianModel: def setup_functions(self): def build_covariance_from_scaling_rotation(scaling, scaling_modifier, rotation): L = build_scaling_rotation(scaling_modifier * scaling, rotation) actual_covariance = L @ L.transpose(1, 2) symm = strip_symmetric(actual_covariance) return symm self.scaling_activation = torch.exp self.scaling_inverse_activation = torch.log self.covariance_activation = build_covariance_from_scaling_rotation self.opacity_activation = torch.sigmoid self.inverse_opacity_activation = inverse_sigmoid self.rotation_activation = torch.nn.functional.normalize def __init__(self, sh_degree): self.active_sh_degree = 0 self.max_sh_degree = sh_degree self._xyz = torch.empty(0) self._features_dc = torch.empty(0) self._features_rest = torch.empty(0) self._scaling = torch.empty(0) self._rotation = torch.empty(0) self._opacity = torch.empty(0) self.max_radii2D = torch.empty(0) self.xyz_gradient_accum = torch.empty(0) self.denom = torch.empty(0) self.optimizer = None self.percent_dense = 0 self.spatial_lr_scale = 0 self.setup_functions() def capture(self): return ( self.active_sh_degree, self._xyz, self._features_dc, self._features_rest, self._scaling, self._rotation, self._opacity, self.max_radii2D, self.xyz_gradient_accum, self.denom, self.optimizer.state_dict(), self.spatial_lr_scale, ) def restore(self, model_args, training_args): (self.active_sh_degree, self._xyz, self._features_dc, self._features_rest, self._scaling, self._rotation, self._opacity, self.max_radii2D, xyz_gradient_accum, denom, opt_dict, self.spatial_lr_scale) = model_args self.training_setup(training_args) self.xyz_gradient_accum = xyz_gradient_accum self.denom = denom self.optimizer.load_state_dict(opt_dict) @property def get_scaling(self): return self.scaling_activation(self._scaling) @property def get_rotation(self): return self.rotation_activation(self._rotation) @property def get_xyz(self): return self._xyz @property def get_features(self): features_dc = self._features_dc features_rest = self._features_rest return torch.cat((features_dc, features_rest), dim=1) @property def get_features_dc(self): return self._features_dc @property def get_features_rest(self): return self._features_rest @property def get_opacity(self): return self.opacity_activation(self._opacity) @property def get_exposure(self): return self._exposure def get_exposure_from_name(self, image_name): if self.pretrained_exposures is None: return self._exposure[self.exposure_mapping[image_name]] else: return self.pretrained_exposures[image_name] def get_covariance(self, scaling_modifier = 1): return self.covariance_activation(self.get_scaling, scaling_modifier, self._rotation) def oneupSHdegree(self): if self.active_sh_degree < self.max_sh_degree: self.active_sh_degree += 1 def create_from_pcd(self, pcd : BasicPointCloud, cam_infos : int, spatial_lr_scale : float): self.spatial_lr_scale = spatial_lr_scale fused_point_cloud = torch.tensor(np.asarray(pcd.points)).float().cuda() fused_color = RGB2SH(torch.tensor(np.asarray(pcd.colors)).float().cuda()) features = torch.zeros((fused_color.shape[0], 3, (self.max_sh_degree + 1) ** 2)).float().cuda() features[:, :3, 0 ] = fused_color features[:, 3:, 1:] = 0.0 print("Number of points at initialisation : ", fused_point_cloud.shape[0]) dist2 = torch.clamp_min(distCUDA2(torch.from_numpy(np.asarray(pcd.points)).float().cuda()), 0.0000001) scales = torch.log(torch.sqrt(dist2))[...,None].repeat(1, 3) rots = torch.zeros((fused_point_cloud.shape[0], 4), device="cuda") rots[:, 0] = 1 opacities = self.inverse_opacity_activation(0.1 * torch.ones((fused_point_cloud.shape[0], 1), dtype=torch.float, device="cuda")) self._xyz = nn.Parameter(fused_point_cloud.requires_grad_(True)) self._features_dc = nn.Parameter(features[:,:,0:1].transpose(1, 2).contiguous().requires_grad_(True)) self._features_rest = nn.Parameter(features[:,:,1:].transpose(1, 2).contiguous().requires_grad_(True)) self._scaling = nn.Parameter(scales.requires_grad_(True)) self._rotation = nn.Parameter(rots.requires_grad_(True)) self._opacity = nn.Parameter(opacities.requires_grad_(True)) self.max_radii2D = torch.zeros((self.get_xyz.shape[0]), device="cuda") self.exposure_mapping = {cam_info.image_name: idx for idx, cam_info in enumerate(cam_infos)} self.pretrained_exposures = None exposure = torch.eye(3, 4, device="cuda")[None].repeat(len(cam_infos), 1, 1) self._exposure = nn.Parameter(exposure.requires_grad_(True)) def training_setup(self, training_args): self.percent_dense = training_args.percent_dense self.xyz_gradient_accum = torch.zeros((self.get_xyz.shape[0], 1), device="cuda") self.denom = torch.zeros((self.get_xyz.shape[0], 1), device="cuda") l = [ {'params': [self._xyz], 'lr': training_args.position_lr_init * self.spatial_lr_scale, "name": "xyz"}, {'params': [self._features_dc], 'lr': training_args.feature_lr, "name": "f_dc"}, {'params': [self._features_rest], 'lr': training_args.feature_lr / 20.0, "name": "f_rest"}, {'params': [self._opacity], 'lr': training_args.opacity_lr, "name": "opacity"}, {'params': [self._scaling], 'lr': training_args.scaling_lr, "name": "scaling"}, {'params': [self._rotation], 'lr': training_args.rotation_lr, "name": "rotation"} ] self.optimizer = torch.optim.Adam(l, lr=0.0, eps=1e-15) if self.pretrained_exposures is None: self.exposure_optimizer = torch.optim.Adam([self._exposure]) self.xyz_scheduler_args = get_expon_lr_func(lr_init=training_args.position_lr_init*self.spatial_lr_scale, lr_final=training_args.position_lr_final*self.spatial_lr_scale, lr_delay_mult=training_args.position_lr_delay_mult, max_steps=training_args.position_lr_max_steps) self.exposure_scheduler_args = get_expon_lr_func(training_args.exposure_lr_init, training_args.exposure_lr_final, lr_delay_steps=training_args.exposure_lr_delay_steps, lr_delay_mult=training_args.exposure_lr_delay_mult, max_steps=training_args.iterations) def update_learning_rate(self, iteration): ''' Learning rate scheduling per step ''' if self.pretrained_exposures is None: for param_group in self.exposure_optimizer.param_groups: param_group['lr'] = self.exposure_scheduler_args(iteration) for param_group in self.optimizer.param_groups: if param_group["name"] == "xyz": lr = self.xyz_scheduler_args(iteration) param_group['lr'] = lr return lr def construct_list_of_attributes(self): l = ['x', 'y', 'z', 'nx', 'ny', 'nz'] # All channels except the 3 DC for i in range(self._features_dc.shape[1]*self._features_dc.shape[2]): l.append('f_dc_{}'.format(i)) for i in range(self._features_rest.shape[1]*self._features_rest.shape[2]): l.append('f_rest_{}'.format(i)) l.append('opacity') for i in range(self._scaling.shape[1]): l.append('scale_{}'.format(i)) for i in range(self._rotation.shape[1]): l.append('rot_{}'.format(i)) return l def save_ply(self, path): mkdir_p(os.path.dirname(path)) xyz = self._xyz.detach().cpu().numpy() normals = np.zeros_like(xyz) f_dc = self._features_dc.detach().transpose(1, 2).flatten(start_dim=1).contiguous().cpu().numpy() f_rest = self._features_rest.detach().transpose(1, 2).flatten(start_dim=1).contiguous().cpu().numpy() opacities = self._opacity.detach().cpu().numpy() scale = self._scaling.detach().cpu().numpy() rotation = self._rotation.detach().cpu().numpy() dtype_full = [(attribute, 'f4') for attribute in self.construct_list_of_attributes()] elements = np.empty(xyz.shape[0], dtype=dtype_full) attributes = np.concatenate((xyz, normals, f_dc, f_rest, opacities, scale, rotation), axis=1) elements[:] = list(map(tuple, attributes)) el = PlyElement.describe(elements, 'vertex') PlyData([el]).write(path) def reset_opacity(self): opacities_new = self.inverse_opacity_activation(torch.min(self.get_opacity, torch.ones_like(self.get_opacity)*0.01)) optimizable_tensors = self.replace_tensor_to_optimizer(opacities_new, "opacity") self._opacity = optimizable_tensors["opacity"] def load_ply(self, path, use_train_test_exp = False): plydata = PlyData.read(path) if use_train_test_exp: exposure_file = os.path.join(os.path.dirname(path), os.pardir, os.pardir, "exposure.json") if os.path.exists(exposure_file): with open(exposure_file, "r") as f: exposures = json.load(f) self.pretrained_exposures = {image_name: torch.FloatTensor(exposures[image_name]).requires_grad_(False).cuda() for image_name in exposures} print(f"Pretrained exposures loaded.") else: print(f"No exposure to be loaded at {exposure_file}") self.pretrained_exposures = None xyz = np.stack((np.asarray(plydata.elements[0]["x"]), np.asarray(plydata.elements[0]["y"]), np.asarray(plydata.elements[0]["z"])), axis=1) opacities = np.asarray(plydata.elements[0]["opacity"])[..., np.newaxis] features_dc = np.zeros((xyz.shape[0], 3, 1)) features_dc[:, 0, 0] = np.asarray(plydata.elements[0]["f_dc_0"]) features_dc[:, 1, 0] = np.asarray(plydata.elements[0]["f_dc_1"]) features_dc[:, 2, 0] = np.asarray(plydata.elements[0]["f_dc_2"]) extra_f_names = [p.name for p in plydata.elements[0].properties if p.name.startswith("f_rest_")] extra_f_names = sorted(extra_f_names, key = lambda x: int(x.split('_')[-1])) assert len(extra_f_names)==3*(self.max_sh_degree + 1) ** 2 - 3 features_extra = np.zeros((xyz.shape[0], len(extra_f_names))) for idx, attr_name in enumerate(extra_f_names): features_extra[:, idx] = np.asarray(plydata.elements[0][attr_name]) # Reshape (P,F*SH_coeffs) to (P, F, SH_coeffs except DC) features_extra = features_extra.reshape((features_extra.shape[0], 3, (self.max_sh_degree + 1) ** 2 - 1)) scale_names = [p.name for p in plydata.elements[0].properties if p.name.startswith("scale_")] scale_names = sorted(scale_names, key = lambda x: int(x.split('_')[-1])) scales = np.zeros((xyz.shape[0], len(scale_names))) for idx, attr_name in enumerate(scale_names): scales[:, idx] = np.asarray(plydata.elements[0][attr_name]) rot_names = [p.name for p in plydata.elements[0].properties if p.name.startswith("rot")] rot_names = sorted(rot_names, key = lambda x: int(x.split('_')[-1])) rots = np.zeros((xyz.shape[0], len(rot_names))) for idx, attr_name in enumerate(rot_names): rots[:, idx] = np.asarray(plydata.elements[0][attr_name]) self._xyz = nn.Parameter(torch.tensor(xyz, dtype=torch.float, device="cuda").requires_grad_(True)) self._features_dc = nn.Parameter(torch.tensor(features_dc, dtype=torch.float, device="cuda").transpose(1, 2).contiguous().requires_grad_(True)) self._features_rest = nn.Parameter(torch.tensor(features_extra, dtype=torch.float, device="cuda").transpose(1, 2).contiguous().requires_grad_(True)) self._opacity = nn.Parameter(torch.tensor(opacities, dtype=torch.float, device="cuda").requires_grad_(True)) self._scaling = nn.Parameter(torch.tensor(scales, dtype=torch.float, device="cuda").requires_grad_(True)) self._rotation = nn.Parameter(torch.tensor(rots, dtype=torch.float, device="cuda").requires_grad_(True)) self.active_sh_degree = self.max_sh_degree def replace_tensor_to_optimizer(self, tensor, name): optimizable_tensors = {} for group in self.optimizer.param_groups: if group["name"] == name: stored_state = self.optimizer.state.get(group['params'][0], None) stored_state["exp_avg"] = torch.zeros_like(tensor) stored_state["exp_avg_sq"] = torch.zeros_like(tensor) del self.optimizer.state[group['params'][0]] group["params"][0] = nn.Parameter(tensor.requires_grad_(True)) self.optimizer.state[group['params'][0]] = stored_state optimizable_tensors[group["name"]] = group["params"][0] return optimizable_tensors def _prune_optimizer(self, mask): optimizable_tensors = {} for group in self.optimizer.param_groups: stored_state = self.optimizer.state.get(group['params'][0], None) if stored_state is not None: stored_state["exp_avg"] = stored_state["exp_avg"][mask] stored_state["exp_avg_sq"] = stored_state["exp_avg_sq"][mask] del self.optimizer.state[group['params'][0]] group["params"][0] = nn.Parameter((group["params"][0][mask].requires_grad_(True))) self.optimizer.state[group['params'][0]] = stored_state optimizable_tensors[group["name"]] = group["params"][0] else: group["params"][0] = nn.Parameter(group["params"][0][mask].requires_grad_(True)) optimizable_tensors[group["name"]] = group["params"][0] return optimizable_tensors def prune_points(self, mask): valid_points_mask = ~mask optimizable_tensors = self._prune_optimizer(valid_points_mask) self._xyz = optimizable_tensors["xyz"] self._features_dc = optimizable_tensors["f_dc"] self._features_rest = optimizable_tensors["f_rest"] self._opacity = optimizable_tensors["opacity"] self._scaling = optimizable_tensors["scaling"] self._rotation = optimizable_tensors["rotation"] self.xyz_gradient_accum = self.xyz_gradient_accum[valid_points_mask] self.denom = self.denom[valid_points_mask] self.max_radii2D = self.max_radii2D[valid_points_mask] def cat_tensors_to_optimizer(self, tensors_dict): optimizable_tensors = {} for group in self.optimizer.param_groups: assert len(group["params"]) == 1 extension_tensor = tensors_dict[group["name"]] stored_state = self.optimizer.state.get(group['params'][0], None) if stored_state is not None: stored_state["exp_avg"] = torch.cat((stored_state["exp_avg"], torch.zeros_like(extension_tensor)), dim=0) stored_state["exp_avg_sq"] = torch.cat((stored_state["exp_avg_sq"], torch.zeros_like(extension_tensor)), dim=0) del self.optimizer.state[group['params'][0]] group["params"][0] = nn.Parameter(torch.cat((group["params"][0], extension_tensor), dim=0).requires_grad_(True)) self.optimizer.state[group['params'][0]] = stored_state optimizable_tensors[group["name"]] = group["params"][0] else: group["params"][0] = nn.Parameter(torch.cat((group["params"][0], extension_tensor), dim=0).requires_grad_(True)) optimizable_tensors[group["name"]] = group["params"][0] return optimizable_tensors def densification_postfix(self, new_xyz, new_features_dc, new_features_rest, new_opacities, new_scaling, new_rotation): d = {"xyz": new_xyz, "f_dc": new_features_dc, "f_rest": new_features_rest, "opacity": new_opacities, "scaling" : new_scaling, "rotation" : new_rotation} optimizable_tensors = self.cat_tensors_to_optimizer(d) self._xyz = optimizable_tensors["xyz"] self._features_dc = optimizable_tensors["f_dc"] self._features_rest = optimizable_tensors["f_rest"] self._opacity = optimizable_tensors["opacity"] self._scaling = optimizable_tensors["scaling"] self._rotation = optimizable_tensors["rotation"] self.xyz_gradient_accum = torch.zeros((self.get_xyz.shape[0], 1), device="cuda") self.denom = torch.zeros((self.get_xyz.shape[0], 1), device="cuda") self.max_radii2D = torch.zeros((self.get_xyz.shape[0]), device="cuda") def densify_and_split(self, grads, grad_threshold, scene_extent, N=2): n_init_points = self.get_xyz.shape[0] # Extract points that satisfy the gradient condition padded_grad = torch.zeros((n_init_points), device="cuda") padded_grad[:grads.shape[0]] = grads.squeeze() selected_pts_mask = torch.where(padded_grad >= grad_threshold, True, False) selected_pts_mask = torch.logical_and(selected_pts_mask, torch.max(self.get_scaling, dim=1).values > self.percent_dense*scene_extent) stds = self.get_scaling[selected_pts_mask].repeat(N,1) means =torch.zeros((stds.size(0), 3),device="cuda") samples = torch.normal(mean=means, std=stds) rots = build_rotation(self._rotation[selected_pts_mask]).repeat(N,1,1) new_xyz = torch.bmm(rots, samples.unsqueeze(-1)).squeeze(-1) + self.get_xyz[selected_pts_mask].repeat(N, 1) new_scaling = self.scaling_inverse_activation(self.get_scaling[selected_pts_mask].repeat(N,1) / (0.8*N)) new_rotation = self._rotation[selected_pts_mask].repeat(N,1) new_features_dc = self._features_dc[selected_pts_mask].repeat(N,1,1) new_features_rest = self._features_rest[selected_pts_mask].repeat(N,1,1) new_opacity = self._opacity[selected_pts_mask].repeat(N,1) self.densification_postfix(new_xyz, new_features_dc, new_features_rest, new_opacity, new_scaling, new_rotation) prune_filter = torch.cat((selected_pts_mask, torch.zeros(N * selected_pts_mask.sum(), device="cuda", dtype=bool))) self.prune_points(prune_filter) def densify_and_clone(self, grads, grad_threshold, scene_extent): # Extract points that satisfy the gradient condition selected_pts_mask = torch.where(torch.norm(grads, dim=-1) >= grad_threshold, True, False) selected_pts_mask = torch.logical_and(selected_pts_mask, torch.max(self.get_scaling, dim=1).values <= self.percent_dense*scene_extent) new_xyz = self._xyz[selected_pts_mask] new_features_dc = self._features_dc[selected_pts_mask] new_features_rest = self._features_rest[selected_pts_mask] new_opacities = self._opacity[selected_pts_mask] new_scaling = self._scaling[selected_pts_mask] new_rotation = self._rotation[selected_pts_mask] self.densification_postfix(new_xyz, new_features_dc, new_features_rest, new_opacities, new_scaling, new_rotation) def densify_and_prune(self, max_grad, min_opacity, extent, max_screen_size): grads = self.xyz_gradient_accum / self.denom grads[grads.isnan()] = 0.0 self.densify_and_clone(grads, max_grad, extent) self.densify_and_split(grads, max_grad, extent) prune_mask = (self.get_opacity < min_opacity).squeeze() if max_screen_size: big_points_vs = self.max_radii2D > max_screen_size big_points_ws = self.get_scaling.max(dim=1).values > 0.1 * extent prune_mask = torch.logical_or(torch.logical_or(prune_mask, big_points_vs), big_points_ws) self.prune_points(prune_mask) torch.cuda.empty_cache() def add_densification_stats(self, viewspace_point_tensor, update_filter): self.xyz_gradient_accum[update_filter] += torch.norm(viewspace_point_tensor.grad[update_filter,:2], dim=-1, keepdim=True) self.denom[update_filter] += 1 这个是3dgs网络模型的一个核心代码,你有哪些改进策略可以提高模型性能?给出具体改进策略和对应的改进代码
08-27
下面的Python代码是基于高斯渲染的三维场景训练系统。请解释代码内容,给每一行代码添加注释。 def training(): training_args = cfg.train optim_args = cfg.optim data_args = cfg.data start_iter = 0 tb_writer = prepare_output_and_logger() dataset = Dataset() gaussians = StreetGaussianModel(dataset.scene_info.metadata) scene = Scene(gaussians=gaussians, dataset=dataset) gaussians.training_setup() try: if cfg.loaded_iter == -1: loaded_iter = searchForMaxIteration(cfg.trained_model_dir) else: loaded_iter = cfg.loaded_iter ckpt_path = os.path.join(cfg.trained_model_dir, f'iteration_{loaded_iter}.pth') state_dict = torch.load(ckpt_path) start_iter = state_dict['iter'] print(f'Loading model from {ckpt_path}') gaussians.load_state_dict(state_dict) except: pass print(f'Starting from {start_iter}') save_cfg(cfg, cfg.model_path, epoch=start_iter) gaussians_renderer = StreetGaussianRenderer() iter_start = torch.cuda.Event(enable_timing = True) iter_end = torch.cuda.Event(enable_timing = True) ema_loss_for_log = 0.0 ema_psnr_for_log = 0.0 psnr_dict = {} progress_bar = tqdm(range(start_iter, training_args.iterations)) start_iter += 1 viewpoint_stack = None for iteration in range(start_iter, training_args.iterations + 1): iter_start.record() gaussians.update_learning_rate(iteration) # Every 1000 its we increase the levels of SH up to a maximum degree if iteration % 1000 == 0: gaussians.oneupSHdegree() # Every 1000 iterations upsample # if iteration % 1000 == 0: # if resolution_scales: # scale = resolution_scales.pop() # Pick a random Camera if not viewpoint_stack: viewpoint_stack = scene.getTrainCameras().copy() viewpoint_cam: Camera = viewpoint_stack.pop(randint(0, len(viewpoint_stack) - 1)) # ==================================================================== # Get mask # original_mask: pixel in original_mask with 0 will not be surpervised # original_acc_mask: use to suepervise the acc result of rendering # original_sky_mask: sky mask gt_image = viewpoint_cam.original_image.cuda() if hasattr(viewpoint_cam, 'original_mask'): mask = viewpoint_cam.original_mask.cuda().bool() else: mask = torch.ones_like(gt_image[0:1]).bool() if hasattr(viewpoint_cam, 'original_sky_mask'): sky_mask = viewpoint_cam.original_sky_mask.cuda() else: sky_mask = None if hasattr(viewpoint_cam, 'original_obj_bound'): obj_bound = viewpoint_cam.original_obj_bound.cuda().bool() else: obj_bound = torch.zeros_like(gt_image[0:1]).bool() if (iteration - 1) == training_args.debug_from: cfg.render.debug = True render_pkg = gaussians_renderer.render(viewpoint_cam, gaussians) image, acc, viewspace_point_tensor, visibility_filter, radii = render_pkg["rgb"], render_pkg['acc'], render_pkg["viewspace_points"], render_pkg["visibility_filter"], render_pkg["radii"] depth = render_pkg['depth'] # [1, H, W] scalar_dict = dict() # rgb loss Ll1 = l1_loss(image, gt_image, mask) scalar_dict['l1_loss'] = Ll1.item() loss = (1.0 - optim_args.lambda_dssim) * optim_args.lambda_l1 * Ll1 + optim_args.lambda_dssim * (1.0 - ssim(image, gt_image, mask=mask)) # sky loss if optim_args.lambda_sky > 0 and gaussians.include_sky and sky_mask is not None: acc = torch.clamp(acc, min=1e-6, max=1.-1e-6) sky_loss = torch.where(sky_mask, -torch.log(1 - acc), -torch.log(acc)).mean() if len(optim_args.lambda_sky_scale) > 0: sky_loss *= optim_args.lambda_sky_scale[viewpoint_cam.meta['cam']] scalar_dict['sky_loss'] = sky_loss.item() loss += optim_args.lambda_sky * sky_loss # semantic loss if optim_args.lambda_semantic > 0 and data_args.get('use_semantic', False) and 'semantic' in viewpoint_cam.meta: gt_semantic = viewpoint_cam.meta['semantic'].cuda().long() # [1, H, W] if torch.all(gt_semantic == -1): semantic_loss = torch.zeros_like(Ll1) else: semantic = render_pkg['semantic'].unsqueeze(0) # [1, S, H, W] semantic_loss = torch.nn.functional.cross_entropy( input=semantic, target=gt_semantic, ignore_index=-1, reduction='mean' ) scalar_dict['semantic_loss'] = semantic_loss.item() loss += optim_args.lambda_semantic * semantic_loss if optim_args.lambda_reg > 0 and gaussians.include_obj and iteration >= optim_args.densify_until_iter: render_pkg_obj = gaussians_renderer.render_object(viewpoint_cam, gaussians) image_obj, acc_obj = render_pkg_obj["rgb"], render_pkg_obj['acc'] acc_obj = torch.clamp(acc_obj, min=1e-6, max=1.-1e-6) # box_reg_loss = gaussians.get_box_reg_loss() # scalar_dict['box_reg_loss'] = box_reg_loss.item() # loss += optim_args.lambda_reg * box_reg_loss obj_acc_loss = torch.where(obj_bound, -(acc_obj * torch.log(acc_obj) + (1. - acc_obj) * torch.log(1. - acc_obj)), -torch.log(1. - acc_obj)).mean() scalar_dict['obj_acc_loss'] = obj_acc_loss.item() loss += optim_args.lambda_reg * obj_acc_loss # obj_acc_loss = -((acc_obj * torch.log(acc_obj) + (1. - acc_obj) * torch.log(1. - acc_obj))).mean() # scalar_dict['obj_acc_loss'] = obj_acc_loss.item() # loss += optim_args.lambda_reg * obj_acc_loss # lidar depth loss if optim_args.lambda_depth_lidar > 0 and 'lidar_depth' in viewpoint_cam.meta: lidar_depth = viewpoint_cam.meta['lidar_depth'].cuda() # [1, H, W] depth_mask = torch.logical_and((lidar_depth > 0.), mask) # depth_mask[obj_bound] = False if torch.nonzero(depth_mask).any(): expected_depth = depth / (render_pkg['acc'] + 1e-10) depth_error = torch.abs((expected_depth[depth_mask] - lidar_depth[depth_mask])) depth_error, _ = torch.topk(depth_error, int(0.95 * depth_error.size(0)), largest=False) lidar_depth_loss = depth_error.mean() scalar_dict['lidar_depth_loss'] = lidar_depth_loss else: lidar_depth_loss = torch.zeros_like(Ll1) loss += optim_args.lambda_depth_lidar * lidar_depth_loss # color correction loss if optim_args.lambda_color_correction > 0 and gaussians.use_color_correction: color_correction_reg_loss = gaussians.color_correction.regularization_loss(viewpoint_cam) scalar_dict['color_correction_reg_loss'] = color_correction_reg_loss.item() loss += optim_args.lambda_color_correction * color_correction_reg_loss # pose correction loss if optim_args.lambda_pose_correction > 0 and gaussians.use_pose_correction: pose_correction_reg_loss = gaussians.pose_correction.regularization_loss() scalar_dict['pose_correction_reg_loss'] = pose_correction_reg_loss.item() loss += optim_args.lambda_pose_correction * pose_correction_reg_loss # scale flatten loss if optim_args.lambda_scale_flatten > 0: scale_flatten_loss = gaussians.background.scale_flatten_loss() scalar_dict['scale_flatten_loss'] = scale_flatten_loss.item() loss += optim_args.lambda_scale_flatten * scale_flatten_loss # opacity sparse loss if optim_args.lambda_opacity_sparse > 0: opacity = gaussians.get_opacity opacity = opacity.clamp(1e-6, 1-1e-6) log_opacity = opacity * torch.log(opacity) log_one_minus_opacity = (1-opacity) * torch.log(1 - opacity) sparse_loss = -1 * (log_opacity + log_one_minus_opacity)[visibility_filter].mean() scalar_dict['opacity_sparse_loss'] = sparse_loss.item() loss += optim_args.lambda_opacity_sparse * sparse_loss # normal loss if optim_args.lambda_normal_mono > 0 and 'mono_normal' in viewpoint_cam.meta and 'normals' in render_pkg: if sky_mask is None: normal_mask = mask else: normal_mask = torch.logical_and(mask, ~sky_mask) normal_mask = normal_mask.squeeze(0) normal_mask[:50] = False normal_gt = viewpoint_cam.meta['mono_normal'].permute(1, 2, 0).cuda() # [H, W, 3] R_c2w = viewpoint_cam.world_view_transform[:3, :3] normal_gt = torch.matmul(normal_gt, R_c2w.T) # to world space normal_pred = render_pkg['normals'].permute(1, 2, 0) # [H, W, 3] normal_l1_loss = torch.abs(normal_pred[normal_mask] - normal_gt[normal_mask]).mean() normal_cos_loss = (1. - torch.sum(normal_pred[normal_mask] * normal_gt[normal_mask], dim=-1)).mean() scalar_dict['normal_l1_loss'] = normal_l1_loss.item() scalar_dict['normal_cos_loss'] = normal_cos_loss.item() normal_loss = normal_l1_loss + normal_cos_loss loss += optim_args.lambda_normal_mono * normal_loss scalar_dict['loss'] = loss.item() loss.backward() iter_end.record() is_save_images = True if is_save_images and (iteration % 1000 == 0): # row0: gt_image, image, depth # row1: acc, image_obj, acc_obj depth_colored, _ = visualize_depth_numpy(depth.detach().cpu().numpy().squeeze(0)) depth_colored = depth_colored[..., [2, 1, 0]] / 255. depth_colored = torch.from_numpy(depth_colored).permute(2, 0, 1).float().cuda() row0 = torch.cat([gt_image, image, depth_colored], dim=2) acc = acc.repeat(3, 1, 1) with torch.no_grad(): render_pkg_obj = gaussians_renderer.render_object(viewpoint_cam, gaussians) image_obj, acc_obj = render_pkg_obj["rgb"], render_pkg_obj['acc'] acc_obj = acc_obj.repeat(3, 1, 1) row1 = torch.cat([acc, image_obj, acc_obj], dim=2) image_to_show = torch.cat([row0, row1], dim=1) image_to_show = torch.clamp(image_to_show, 0.0, 1.0) os.makedirs(f"{cfg.model_path}/log_images", exist_ok = True) save_img_torch(image_to_show, f"{cfg.model_path}/log_images/{iteration}.jpg") with torch.no_grad(): # Log tensor_dict = dict() # Progress bar ema_loss_for_log = 0.4 * loss.item() + 0.6 * ema_loss_for_log ema_psnr_for_log = 0.4 * psnr(image, gt_image, mask).mean().float() + 0.6 * ema_psnr_for_log if viewpoint_cam.id not in psnr_dict: psnr_dict[viewpoint_cam.id] = psnr(image, gt_image, mask).mean().float() else: psnr_dict[viewpoint_cam.id] = 0.4 * psnr(image, gt_image, mask).mean().float() + 0.6 * psnr_dict[viewpoint_cam.id] if iteration % 10 == 0: progress_bar.set_postfix({"Exp": f"{cfg.task}-{cfg.exp_name}", "Loss": f"{ema_loss_for_log:.{7}f},", "PSNR": f"{ema_psnr_for_log:.{4}f}"}) progress_bar.update(10) if iteration == training_args.iterations: progress_bar.close() # Log and save if (iteration in training_args.save_iterations): print("\n[ITER {}] Saving Gaussians".format(iteration)) scene.save(iteration) # Densification if iteration < optim_args.densify_until_iter: gaussians.set_visibility(include_list=list(set(gaussians.model_name_id.keys()) - set(['sky']))) gaussians.parse_camera(viewpoint_cam) gaussians.set_max_radii2D(radii, visibility_filter) gaussians.add_densification_stats(viewspace_point_tensor, visibility_filter) prune_big_points = iteration > optim_args.opacity_reset_interval if iteration > optim_args.densify_from_iter: if iteration % optim_args.densification_interval == 0: scalars, tensors = gaussians.densify_and_prune( max_grad=optim_args.densify_grad_threshold, min_opacity=optim_args.min_opacity, prune_big_points=prune_big_points, ) scalar_dict.update(scalars) tensor_dict.update(tensors) # Reset opacity if iteration < optim_args.densify_until_iter: if iteration % optim_args.opacity_reset_interval == 0: gaussians.reset_opacity() if data_args.white_background and iteration == optim_args.densify_from_iter: gaussians.reset_opacity() training_report(tb_writer, iteration, scalar_dict, tensor_dict, training_args.test_iterations, scene, gaussians_renderer) # Optimizer step if iteration < training_args.iterations: gaussians.update_optimizer() if (iteration in training_args.checkpoint_iterations): print("\n[ITER {}] Saving Checkpoint".format(iteration)) state_dict = gaussians.save_state_dict(is_final=(iteration == training_args.iterations)) state_dict['iter'] = iteration ckpt_path = os.path.join(cfg.trained_model_dir, f'iteration_{iteration}.pth') torch.save(state_dict, ckpt_path)
08-19
# train.py import torch import torch.nn.functional as F from torch import optim from models.dirvae import DirVAE from data.mnist_loader import get_mnist_loaders from tqdm import tqdm device = torch.device("cuda" if torch.cuda.is_available() else "cpu") def elbo_loss(x, x_recon, alpha): recon_loss = F.binary_cross_entropy(x_recon, x, reduction='sum') / x.size(0) alpha0 = alpha.sum(dim=1, keepdim=True) prior = torch.ones_like(alpha).to(device) prior0 = prior.sum(dim=1, keepdim=True) kl = ( torch.lgamma(alpha0) - torch.lgamma(prior0) - torch.sum(torch.lgamma(alpha), dim=1) + torch.sum(torch.lgamma(prior), dim=1) + torch.sum((alpha - prior) * (torch.digamma(alpha) - torch.digamma(alpha0)), dim=1) ).mean() return recon_loss, kl def train(model, train_loader, epochs=200, lr=5e-4): model.to(device) optimizer = optim.Adam(model.parameters(), lr=lr) scheduler = torch.optim.lr_scheduler.StepLR(optimizer, step_size=30, gamma=0.5) for epoch in range(1, epochs + 1): model.train() total_elbo, total_recon, total_kl = 0, 0, 0 for x, _ in tqdm(train_loader, desc=f"Epoch {epoch}"): x = x.to(device) x_recon, alpha, _ = model(x) recon_loss, kl = elbo_loss(x, x_recon, alpha) beta = min(1.0, epoch / 50.0) loss = recon_loss + beta * kl optimizer.zero_grad() loss.backward() optimizer.step() total_elbo += loss.item() total_recon += recon_loss.item() total_kl += kl.item() scheduler.step() print(f"[Epoch {epoch}] ELBO: {total_elbo:.2f}, Recon: {total_recon:.2f}, KL: {total_kl:.2f}") torch.save(model.state_dict(), "dirvae_optimized.pt") print("✅ 模型已保存为 dirvae_optimized.pt") if __name__ == "__main__": train_loader, _ = get_mnist_loaders(batch_size=128) model = DirVAE(latent_dim=50, learn_alpha=False) train(model, train_loa
06-22
import torch import numpy as np from My_Semicircle_mix_torch_function import * from poly_func_2 import * torch.cuda.empty_cache() device = torch.device("cuda") #"cuda" r = 1 node_boundary = 64 node_interior = 50 n_base = 6 # the number of base includes the nonharmonic base low_order = 2 # Domain and Sampling def interior(m = n_base): x_boundary_1, x_boundary_2, x_inner = My_Semicircle_torch(r, node_boundary, node_interior, 2) #xy_b1, xy_b2, xy_in = My_Semicircle_torch(r, n_b, n_in, 1) x = x_inner[:, 0].reshape(x_inner.size()[0], 1) y = x_inner[:, 1].reshape(x_inner.size()[0], 1) cond = torch.zeros(x_inner.size()[0], m) return x.requires_grad_(True), y.requires_grad_(True), cond def boundary_1(m = n_base): x_boundary_1, x_boundary_2, x_inner = My_Semicircle_torch(r, node_boundary, node_interior, 2) x = x_boundary_2[:, 0].reshape(x_boundary_2.size()[0], 1) y = x_boundary_2[:, 1].reshape(x_boundary_2.size()[0], 1) cond = torch.zeros(x_boundary_2.size()[0], m) for i in range(x_boundary_2.size()[0]): cond[i, -1] = torch.exp(x[i]**2 + y[i]**2) * torch.sin(x[i]) return x.requires_grad_(True), y.requires_grad_(True), cond def boundary_y(m = n_base): x_boundary_1, x_boundary_2, x_inner = My_Semicircle_torch(r, node_boundary, node_interior, 2) x = x_boundary_1[:, 0].reshape(x_boundary_1.size()[0], 1) y = x_boundary_1[:, 1].reshape(x_boundary_1.size()[0], 1) cond = torch.zeros(x_boundary_1.size()[0], m) for i in range(x_boundary_1.size()[0]): cond[i, -1] = 2 * torch.exp(x[i]**2 + y[i]**2) * torch.sin(x[i]) * y[i] return x.requires_grad_(True), y.requires_grad_(True), cond # Neural Network class PINN(torch.nn.Module): def __init__(self): super(PINN, self).__init__() self.nodes = 48 self.net = torch.nn.Sequential( torch.nn.Linear(2, self.nodes), #Tanh torch.nn.Tanh(), torch.nn.Linear(self.nodes, self.nodes), #ReLU torch.nn.Tanh(), torch.nn.Linear(self.nodes, self.nodes), #Sigmoid torch.nn.Tanh(), torch.nn.Linear(self.nodes, self.nodes), torch.nn.Tanh(), torch.nn.Linear(self.nodes, n_base) ) def forward(self, x): return self.net(x) # Loss loss = torch.nn.MSELoss() def gradients(u, x, order=1): if order == 1: return torch.autograd.grad(u, x, grad_outputs=torch.ones_like(u), create_graph=True, only_inputs=True, )[0] else: return gradients(gradients(u, x), x, order=order - 1) def l_interior(u, a, low_order_ = low_order): x, y, cond = interior() x = x.to(device) y = y.to(device) cond = cond.to(device) uxy = u(torch.cat([x, y], dim=1)) start_ = 0 for i in range(uxy.size()[1]): step_ = int((low_order_ + 1 + i) * (low_order_ + 2 + i)/2) end_ = start_ + step_ a_ = a[start_:end_, 0] a_ = a_.reshape(len(a_), 1) cond_i = polyfunc(x, y, low_order_ + i)@a_ for k in range(cond.size()[0]): cond[k, i] = cond_i[k, 0] start_ = end_ return loss(uxy, cond), torch.cat([x, y], dim=1) def l_boundary_1(u): x, y, cond = boundary_1() x = x.to(device) y = y.to(device) cond = cond.to(device) uxy = u(torch.cat([x, y], dim=1)) return loss(uxy, cond), torch.cat([x, y], dim=1) def l_boundary_y(u): x, y, cond = boundary_y() x = x.to(device) y = y.to(device) cond = cond.to(device) uxy = u(torch.cat([x, y], dim=1)) uxy_y = torch.zeros_like(uxy).to(device) for i in range(uxy.size()[1]): u_y = gradients(uxy[:, i], y) for j in range(uxy.size()[0]): uxy_y[j, i] = u_y[j] return loss(uxy_y, cond), torch.cat([x, y], dim=1) # Training min_loss = 1000.0 n_a = int(((low_order + 1) * (low_order + 2)/2 + (low_order + n_base) * (low_order + n_base + 1)/2) * n_base/2) a = torch.rand(n_a, 1) a = a.requires_grad_(True) u = PINN().to(device) # optimize_ = torch.optim.Adam(u.parameters(), lr=0.005) # SGD Adam [ w_predict_2, X_source] optimize_ = torch.optim.Adam([{'params': u.parameters(), 'lr': 0.01}, {'params': a, 'lr': 0.01}]) epoch = 20000 for i in range(epoch): optimize_.zero_grad() loss_ = l_interior(u, a)[0] \ + l_boundary_1(u)[0] \ + l_boundary_y(u)[0] # + l_boundary_y(u)[0] loss_.backward() optimize_.step() if loss_ < min_loss: min_loss = loss_ torch.save(u.state_dict(), 'net_params.pkl') print(f"\rEpoch : {i} / {epoch}, loss : {loss_:.3e} loss_min : {min_loss:.3e}", end="") if i % 1000 == 0: print("") if loss_ < 4.18e-5: break print(f"\r") def analy_fun(x, y): ana = torch.exp(x**2 + y**2) * torch.sin(x) return ana xy_boundary_infer_1, xy_boundary_infer_2, xy_inner_infer = My_Semicircle_torch(r, 200, 750, 1) xy_boundary_infer_1 = xy_boundary_infer_1.to(device) xy_boundary_infer_2 = xy_boundary_infer_2.to(device) xy_inner_infer = xy_inner_infer.to(device) x_boundary_1 = xy_boundary_infer_1[:, 0].reshape(xy_boundary_infer_1.size()[0], 1) y_boundary_1 = xy_boundary_infer_1[:, 1].reshape(xy_boundary_infer_1.size()[0], 1) x_boundary_2 = xy_boundary_infer_2[:, 0].reshape(xy_boundary_infer_2.size()[0], 1) y_boundary_2 = xy_boundary_infer_2[:, 1].reshape(xy_boundary_infer_2.size()[0], 1) x_inner = xy_inner_infer[:, 0].reshape(xy_inner_infer.size()[0], 1) y_inner = xy_inner_infer[:, 1].reshape(xy_inner_infer.size()[0], 1) u_pred_boundary_1 = u(xy_boundary_infer_1.float()) u_pred_boundary_2 = u(xy_boundary_infer_2.float()) u_pred_in = u(xy_inner_infer.float()) analytic_boundary_1 = analy_fun(x_boundary_1, y_boundary_1) analytic_boundary_2 = analy_fun(x_boundary_2, y_boundary_2) result_boundary_1 = torch.cat([xy_boundary_infer_1, u_pred_boundary_1, analytic_boundary_1], 1) result_boundary_2 = torch.cat([xy_boundary_infer_2, u_pred_boundary_2, analytic_boundary_2], 1) analytic_inner = analy_fun(x_inner, y_inner) result_in = torch.cat([xy_inner_infer, u_pred_in], 1) xy_boundary_infer = torch.cat([xy_boundary_infer_1, xy_boundary_infer_2], 0) xy_boundary_infer = xy_boundary_infer.cpu().detach().numpy() result_in = result_in.cpu().detach().numpy() result_boundary_1 = result_boundary_1.cpu().detach().numpy() result_boundary_2 = result_boundary_2.cpu().detach().numpy() np.savetxt('result_in.txt', result_in) np.savetxt('result_boundary-1.txt', result_boundary_1) np.savetxt('result_boundary-2.txt', result_boundary_2) np.savetxt('xy_boundary.txt', xy_boundary_infer) exit()分析解释这段代码
最新发布
12-04
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值