Max Sum
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 172541 Accepted Submission(s): 40197
Problem Description
Given a sequence a[1],a[2],a[3]......a[n], your job is to calculate the max sum of a sub-sequence. For example, given (6,-1,5,4,-7), the max sum in this sequence is 6 + (-1) + 5 + 4 = 14.
Input
The first line of the input contains an integer T(1<=T<=20) which means the number of test cases. Then T lines follow, each line starts with a number N(1<=N<=100000), then N integers followed(all the integers are between -1000 and 1000).
Output
For each test case, you should output two lines. The first line is "Case #:", # means the number of the test case. The second line contains three integers, the Max Sum in the sequence, the start position of the sub-sequence, the end position of the sub-sequence.
If there are more than one result, output the first one. Output a blank line between two cases.
Sample Input
2
5 6 -1 5 4 -7
7 0 6 -1 1 -6 7 -5
Sample Output
Case 1:
14 1 4
Case 2:
7 1 6
Author
Ignatius.L
题意就是求最大子段和 状态转移方程dp[i]=max(dp[i-1]+ss[i],ss[i])
就是找初始位置被坑了几次 没有考虑全是负数的情况
AC代码如下:
#include <stdio.h>
#include "string.h"
int main(void)
{
int m,leap=1;
scanf("%d",&m);
while(m--)
{
int n,end,start;
int ss[100001],max;
scanf("%d",&n);
for(int i=0;i<n;i++)
scanf("%d",&ss[i]);
max=ss[0];
end=0;
for(int i=1;i<n;i++)
{
if(ss[i-1]>0) ss[i]+=ss[i-1];
if(ss[i]>max){
max=ss[i];
end=i;//找到最大子段的末位
}
}
if(max<0) start=end; //如果最大子段和小于0,说明所有元素都是负的,最大子段就是那个最大的负数
else{
for(int i=end;i>=0;i--)
if(ss[i]>=0) start=i;
else break;
}
printf("Case %d:\n%d %d %d\n",leap++,max,start+1,end+1);
if(m) printf("\n");
}
}