POJ 2112 Optimal Milking (网络流+二分)

本文探讨了深度学习技术在音视频处理、AR特效、AI音视频处理等领域的应用,包括图像处理、音视频编解码、自然语言处理、区块链与隐私计算等关键技术。介绍了深度学习在音视频分割、语义识别、自动驾驶、AR增强现实等方面的实际案例,展示了其在现代科技发展中的重要作用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Optimal Milking
Time Limit: 2000MS Memory Limit: 30000K
Total Submissions: 9267 Accepted: 3345
Case Time Limit: 1000MS

Description

FJ has moved his K (1 <= K <= 30) milking machines out into the cow pastures among the C (1 <= C <= 200) cows. A set of paths of various lengths runs among the cows and the milking machines. The milking machine locations are named by ID numbers 1..K; the cow locations are named by ID numbers K+1..K+C. 

Each milking point can "process" at most M (1 <= M <= 15) cows each day. 

Write a program to find an assignment for each cow to some milking machine so that the distance the furthest-walking cow travels is minimized (and, of course, the milking machines are not overutilized). At least one legal assignment is possible for all input data sets. Cows can traverse several paths on the way to their milking machine. 

Input

* Line 1: A single line with three space-separated integers: K, C, and M. 

* Lines 2.. ...: Each of these K+C lines of K+C space-separated integers describes the distances between pairs of various entities. The input forms a symmetric matrix. Line 2 tells the distances from milking machine 1 to each of the other entities; line 3 tells the distances from machine 2 to each of the other entities, and so on. Distances of entities directly connected by a path are positive integers no larger than 200. Entities not directly connected by a path have a distance of 0. The distance from an entity to itself (i.e., all numbers on the diagonal) is also given as 0. To keep the input lines of reasonable length, when K+C > 15, a row is broken into successive lines of 15 numbers and a potentially shorter line to finish up a row. Each new row begins on its own line. 

Output

A single line with a single integer that is the minimum possible total distance for the furthest walking cow. 

Sample Input

2 3 2
0 3 2 1 1
3 0 3 2 0
2 3 0 1 0
1 2 1 0 2
1 0 0 2 0

Sample Output

2

Source

思路:先求出每个点之间的最短距离,然后二分查找答案,对于当前的mid,如果从Ki到Cj的路径不为0且长度小于mid,连接一条(i,j,1)的边,源点到Ki连接容量为M的边,Cj到汇点连接容量为1的边,如果最大流可行为C,那么更新ans;
#include<cstdio>
using namespace std;
const int mm=1000000;
const int mn=250;
const int oo=1000000000;
int node,s,t,edge;
int to[mm],flow[mm],next[mm];
int head[mn],work[mn],dis[mn],q[mn],floyd[mn][mn];
inline int min(int a,int b)
{
    return a<b?a:b;
}
inline int max(int a,int b)
{
    return a>b?a:b;
}
inline void init(int nn,int ss,int tt)
{
    node=nn,s=ss,t=tt,edge=0;
    for(int i=0; i<node; ++i) head[i]=-1;
}
inline void add(int u,int v,int c)
{
    to[edge]=v,flow[edge]=c,next[edge]=head[u],head[u]=edge++;
    to[edge]=u,flow[edge]=0,next[edge]=head[v],head[v]=edge++;
}
bool bfs()
{
    int i,u,v,l,r=0;
    for(i=0; i<node; ++i) dis[i]=-1;
    dis[q[r++]=s]=0;
    for(l=0; l<r; ++l)
        for(i=head[u=q[l]]; i>=0; i=next[i])
            if(flow[i]&&dis[v=to[i]]<0)
            {
                dis[q[r++]=v]=dis[u]+1;
                if(v==t)return 1;
            }
    return 0;
}
int dfs(int u,int maxf)
{
    if(u==t) return maxf;
    for(int &i=work[u],v,tmp; i>=0; i=next[i])
        if(flow[i]&&dis[v=to[i]]==dis[u]+1&&(tmp=dfs(v,min(maxf,flow[i])))>0)
        {
            flow[i]-=tmp;
            flow[i^1]+=tmp;
            return tmp;
        }
    return 0;
}
int dinic()
{
    int i,ret=0,delta;
    while(bfs())
    {
        for(i=0; i<node; ++i) work[i]=head[i];
        while(delta=dfs(s,oo))ret+=delta;
    }
    return ret;
}
int main()
{
    int K,C,M;
    while(~scanf("%d%d%d",&K,&C,&M))
    {
        for(int i=1; i<=K+C; i++)
            for(int j=1; j<=K+C; j++)
                scanf("%d",&floyd[i][j]);
        for(int k=1; k<=K+C; k++)
            for(int i=1; i<=K+C; i++)
                for(int j=1; j<=K+C; j++)
                    if(floyd[i][k]&&floyd[k][j])
                    {
                        if(floyd[i][j])
                            floyd[i][j]=min(floyd[i][k]+floyd[k][j],floyd[i][j]);
                        else floyd[i][j]=floyd[i][k]+floyd[k][j];
                    }
        int l=oo,r=0;
        for(int i=1; i<=K; i++)
            for(int j=K+1; j<=K+C; j++)
                if(floyd[i][j])
                    l=min(floyd[i][j],l),r=max(floyd[i][j],r);
        int ans;
        while(r>=l)
        {
            int mid=(l+r)>>1;
            init(K+C+2,0,K+C+1);
            for(int i=1; i<=K; i++) add(s,i,M);
            for(int j=K+1; j<=K+C; j++) add(j,t,1);
            for(int i=1; i<=K; i++)
                for(int j=K+1; j<=K+C; j++)
                    if(floyd[i][j]&&floyd[i][j]<=mid) add(i,j,1);
            if(dinic()==C)
            {
                ans=mid;
                r=mid-1;
            }
            else l=mid+1;
        }
        printf("%d\n",ans);
    }
    return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值