最近在看《利用Python进行数据分析》,练习书中例子
%matplotlib inline
import numpy as np
import matplotlib.pyplot as plt
#np数组的切片是原始数组的视图,当改变切片中的数据时,原始数组中的数据也会被改变
arr=np.arange(10)
print("arr",arr)
arr_slice=arr[5:8]
print("arr_slice",arr_slice)
arr_slice[1]=100
print("arr_slice",arr_slice)
print("arr",arr)
arr [0 1 2 3 4 5 6 7 8 9]
arr_slice [5 6 7]
arr_slice [ 5 100 7]
arr [ 0 1 2 3 4 5 100 7 8 9]
#显示地获得副本
arr_copy=arr[5:8].copy()
arr_copy[1]=666
print("arr_copy",arr_copy)
print("arr",arr)
arr_copy [ 5 666 7]
arr [ 0 1 2 3 4 5 100 7 8 9]
arr2d=np.array([[1,2,3],[4,5,6],[7,8,9]])
arr2d[2:,2:]
array([[9]])
布尔型索引
names=np.array(['Bob','Joe','Will','Bob','Will','Joe','Joe'])
data = np.random.randn(7,4) #7行4列
print(data)
names=='Bob' #array([ True, False, False, True, False, False, False])
print("data[names=='Bob']\n",data[names=='Bob']) #即选择地0,3行
print("data[names=='Bob',:2]\n",data[names=='Bob',:2])#选择0,3行,0,1列
[[ 0.68373329 0.16341463 0.69461828 -0.31262088]
[-0.58232105 0.07963629 0.51687759 -2.37428294]
[ 0.2084486 0.31391127 0.75911201 0.40985095]
[ 1.55252237 -1.13394508 2.21888179 0.85675417]
[-0.35051167 -1.54033925 -1.28263148 0.24368071]
[-1.4963781 0.92840301 -0.13512835 0.7639603 ]
[-1.54994869 0.93570074 -1.46281639 -0.93760228]]
data[names=='Bob']
[[ 0.68373329 0.16341463 0.69461828 -0.31262088]
[ 1.55252237 -1.13394508 2.21888179 0.85675417]]
data[names=='Bob',:2]
[[ 0.68373329 0.16341463]
[ 1.55252237 -1.13394508]]
data[data<0]=0 #利用布尔型数组设置值
data
array([[0.68373329, 0.16341463, 0.69461828, 0. ],
[0. , 0.07963629, 0.51687759, 0. ],
[0.2084486