【Light-oj】-1282 - Leading and Trailing(数论,快速幂,log,好)

1282 - Leading and Trailing
Time Limit: 2 second(s)Memory Limit: 32 MB

You are given two integers: n and k, your task is to find the most significant three digits, and least significant three digits of nk.

Input

Input starts with an integer T (≤ 1000), denoting the number of test cases.

Each case starts with a line containing two integers: n (2 ≤ n < 231) and k (1 ≤ k ≤ 107).

Output

For each case, print the case number and the three leading digits (most significant) and three trailing digits (least significant). You can assume that the input is given such that nk contains at least six digits.

Sample Input

Output for Sample Input

5

123456 1

123456 2

2 31

2 32

29 8751919

Case 1: 123 456

Case 2: 152 936

Case 3: 214 648

Case 4: 429 296

Case 5: 665 669



题意:求n^k前三位数和后三位。log求前三位,快速幂求后三位

求任意前几位不清楚可以先看求第一位:杭电 1060-求n^n第一位数

求前三位: n^k=a*10^m; a就是n^k写成科学计数法小数部分

两边对10去对数,得k*lg(n)=m+lg(a);

  double x=k*log(10)n; pow(10,x-(LL)x)=a     求出了a再 x100就是前三位

求后三位: 快速幂求n^k前三位即可,和求最后一位一样,只不过对1000取余

注意:后三位有0,用03lld来补,比较方便

AC代码:

<span style="font-size:10px;">#include<cstdio>
#include<cmath>
#include<cstring>
#include<algorithm>
using namespace std;
#define INF 0x3f3f3f3f
#define CLR(a,b) memset(a,b,sizeof(a))
#define LL long long
LL quack(LL n,LL m)
{
	LL sum=1;
	n=n%1000;
	while(m)
	{
		if(m&1)
			sum=sum*n %1000;
		n=n*n%1000;
		m>>=1;
	}
	return sum;
}
int main()
{
	int u,ca=1;
	scanf("%d",&u);
	while(u--)
	{
		LL n,k;
		scanf("%lld%lld",&n,&k);
		printf("Case %d: ",ca++);
		LL ans1,ans2;
		double x=(double)k*(log10(n));
		x=pow(10,x-(LL)x);
		ans1=x*100;
		printf("%lld ",ans1);
		ans2=quack(n,k);
		printf("%03lld\n",ans2);
	}
	return 0;
}
</span>


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值