Dice (III) (light oj 1248 概率dp)

本文探讨了对于一个n面公平骰子,为了看到所有面至少一次所需的平均掷骰次数问题。通过数学推导,给出了计算期望掷骰次数的公式,并提供了一个C++实现的示例代码。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Given a dice with n sides, you have to find the expected number of times you have to throw that dice to see all its faces at least once. Assume that the dice is fair, that means when you throw the dice, the probability of occurring any face is equal.

For example, for a fair two sided coin, the result is 3. Because when you first throw the coin, you will definitely see a new face. If you throw the coin again, the chance of getting the opposite side is 0.5, and the chance of getting the same side is 0.5. So, the result is

1 + (1 + 0.5 * (1 + 0.5 * ...))

= 2 + 0.5 + 0.52 + 0.53 + ...

= 2 + 1 = 3

Input

Input starts with an integer T (≤ 100), denoting the number of test cases.

Each case starts with a line containing an integer n (1 ≤ n ≤ 105).

Output

For each case, print the case number and the expected number of times you have to throw the dice to see all its faces at least once. Errors less than 10-6 will be ignored.

Sample Input

5

1

2

3

6

100

Sample Output

Case 1: 1

Case 2: 3

Case 3: 5.5

Case 4: 14.7

Case 5: 518.7377517640

题解:假设已经有k个点数已经出现过, 则掷下一次可能得到未出现过的点数, 期望为1, 也可能得到已出现过的点数, 概率为k / n, 若得到已出现的点数, 则继续掷色子, 所以期望

      E = 1 + k / n (1 + k / n (1 + n / k * (...))) 

        = 1 + k / n + (k / n) ^ 2 + (k / n) ^ 3 + ...//等比数列求和,循环看做无限大(1- (k / n) ^ max)就可以看做1

        = 1 + k / (n - k)

代码如下:

#include <iostream>
#include <cstdio>
#include <stdlib.h>
#include <cmath>
#include <cstring>
#include <algorithm>
#include <string.h>
#include <vector>
#include <queue>
#include <stack>
#include <set>
#include <map>
#include <ctime>
#define maxn 1007
#define N 100005
#define INF 0x3f3f3f3f
#define PI acos(-1)
#define lowbit(x) (x&(-x))
#define eps 0.000000001
#define read(x) scanf("%d",&x)
#define put(x) printf("%d\n",x)
#define Debug(x) cout<<x<<" "<<endl
using namespace std;
typedef long long ll;


int main()
{
    int t,cnt=1;
    cin>>t;
    while(t--)
    {
        int n;
        cin>>n;
        double ans=0;
        for(int i=0;i<n;i++)
            ans+=1+1.0*i/(n-i);
        printf("Case %d: %lf\n",cnt++,ans);
    }
    return 0;
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值