假设以下情景,有一块木板,板上钉上了一些钉子,这些钉子可以由一些细绳连接起来。假设每个钉子可以通过一根或者多根细绳连接起来,那么一定存在这样的情况,即用最少的细绳把所有钉子连接起来。
更为实际的情景是这样的情况,在某地分布着N
个村庄,现在需要在N
个村庄之间修路,每个村庄之前的距离不同,问怎么修最短的路,将各个村庄连接起来。
以上这些问题都可以归纳为最小生成树问题,用正式的表述方法描述为:给定一个无方向的带权图G=(V, E)
,最小生成树为集合T
, T
是以最小代价连接V
中所有顶点所用边E
的最小集合。 集合T
中的边能够形成一颗树,这是因为每个节点(除了根节点)都能向上找到它的一个父节点。
解决最小生成树问题已经有前人开道,Prime
算法和Kruskal
算法,分别从点和边下手解决了该问题。
Prim算法
Prim
算法是一种产生最小生成树的算法。该算法于1930
年由捷克数学家沃伊捷赫·亚尔尼克(英语:Vojtěch Jarník
)发现;并在1957
年由美国计算机科学家罗伯特·普里姆(英语:Robert C. Prim
)独立发现;1959
年,艾兹格·迪科斯彻再次发现了该算法。
Prim
算法从任意一个顶点开始,每次选择一个与当前顶点集最近的一个顶点,并将两顶点之间的边加入到树中。Prim
算法在找当前最近顶点时使用到了贪婪算法。
算法描述:
1. 在一个加权连通图中,顶点集合V
,边集合为E
2. 任意选出一个点作为初始顶点,标记为visit
,计算所有与之相连接的点的距离,选择距离最短的,标记visit
.
3. 重复以下操作,直到所有点都被标记为visit
:
在剩下的点钟,计算与已标记visit
点距离最小的点,标记visit
,证明加入了最小生成树。
下面我们来看一个最小生成树生成的过程:
1 起初,从顶点a
开始生成最小生成树
2 选择顶点a
后,顶点啊置成visit
(涂黑),计算周围与它连接的点的距离:
3 与之相连的点距离分别为7
,6
,4
,选择C
点距离最短,涂黑C
,同时将这条边高亮加入最小生成树:
4 计算与a,c
相连的点的距离(已经涂黑的点不计算),因为与a
相连的已经计算过了,只需要计算与c
相连的点,如果一个点与a,c
都相连,那么它与a
的距离之前已经计算过了,如果它与c的距离更近,则更新距离值,这里计算的是未涂黑的点距离涂黑的点的最近距离,很明显,b
和a
为7
,b
和c
的距离为6
,更新b
和已访问的点集距离为6
,而f
,e
和c
的距离分别是8
,9
,所以还是涂黑b
,高亮边bc
:
5 接下来很明显,d
距离b
最短,将d
涂黑,bd
高亮:
6 f
距离d
为7
,距离b
为4
,更新它的最短距离值是4
,所以涂黑f
,高亮bf
:
7 最后只有e
了:
针对如上的图,代码实例如下:
- #include<iostream>
- #define INF 10000
- using namespace std;
- constint N = 6;
- bool visit[N];
- intdist[N] = { 0, };
- intgraph[N][N] = { {INF,7,4,INF,INF,INF}, //INF代表两点之间不可达
- {7,INF,6,2,INF,4},
- {4,6,INF,INF,9,8},
- {INF,2,INF,INF,INF,7},
- {INF,INF,9,INF,INF,1},
- {INF,4,8,7,1,INF}
- };
- intprim(intcur)
- {
- intindex = cur;
- intsum = 0;
- inti = 0;
- intj = 0;
- cout << index << " ";
- memset(visit,false, sizeof(visit));
- visit[cur] = true;
- for(i = 0; i < N; i++)
- dist[i] = graph[cur][i];//初始化,每个与a邻接的点的距离存入dist
- for(i = 1; i < N; i++)
- {
- intminor = INF;
- for(j = 0; j < N; j++)
- {
- if(!visit[j] && dist[j] < minor) //找到未访问的点中,距离当前最小生成树距离最小的点
- {
- minor = dist[j];
- index = j;
- }
- }
- visit[index] = true;
- cout << index << " ";
- sum += minor;
- for(j = 0; j < N; j++)
- {
- if(!visit[j] && dist[j]>graph[index][j]) //执行更新,如果点距离当前点的距离更近,就更新dist
- {
- dist[j] = graph[index][j];
- }
- }
- }
- cout << endl;
- returnsum; //返回最小生成树的总路径值
- }
- intmain()
- {
- cout << prim(0) << endl;//从顶点a开始
- return0;
- }
Kruskal算法
Kruskal是另一个计算最小生成树的算法,其算法原理如下。首先,将每个顶点放入其自身的数据集合中。然后,按照权值的升序来选择边。当选择每条边时,判断定义边的顶点是否在不同的数据集中。如果是,将此边插入最小生成树的集合中,同时,将集合中包含每个顶点的联合体取出,如果不是,就移动到下一条边。重复这个过程直到所有的边都探查过。
下面还是用一组图示来表现算法的过程:
1 初始情况,一个联通图,定义针对边的数据结构,包括起点,终点,边长度:
1
2
3
4
5
|
typedef struct _node{
int
val;
//长度
int
start;
//边的起点
int
end;
//边的终点
}Node;
|
3 继续找到第二短的边,将c
, d
再放入同一个集合里:
4 继续找,找到第三短的边ab
,因为a
,e
已经在一个集合里,再将b
加入:
5 继续找,找到b
,e
,因为b
,e
已经同属于一个集合,连起来的话就形成环了,所以边be
不加入最小生成树:
6 再找,找到bc
,因为c
,d
是一个集合的,a
,b
,e
是一个集合,所以再合并这两个集合:
这样所有的点都归到一个集合里,生成了最小生成树。
根据上图实现的代码如下:
- #include<iostream>
- #define N 7
- using namespace std;
- typedef struct _node{
- intval;
- intstart;
- intend;
- }Node;
- Node V[N];
- intcmp(constvoid *a, constvoid *b)
- {
- return(*(Node *)a).val - (*(Node*)b).val;
- }
- intedge[N][3] = { { 0,1,3},
- {0,4,1},
- {1,2,5},
- {1,4,4},
- {2,3,2},
- {2,4,6},
- {3,4,7}
- };
- intfather[N] = { 0, };
- intcap[N] = {0,};
- voidmake_set() //初始化集合,让所有的点都各成一个集合,每个集合都只包含自己
- {
- for(inti = 0; i < N; i++)
- {
- father[i] = i;
- cap[i] = 1;
- }
- }
- intfind_set(intx) //判断一个点属于哪个集合,点如果都有着共同的祖先结点,就可以说他们属于一个集合
- {
- if(x != father[x])
- {
- father[x] = find_set(father[x]);
- }
- returnfather[x];
- }
- voidUnion(intx, inty) //将x,y合并到同一个集合
- {
- x = find_set(x);
- y = find_set(y);
- if(x == y)
- return;
- if(cap[x] < cap[y])
- father[x] = find_set(y);
- else
- {
- if(cap[x] == cap[y])
- cap[x]++;
- father[y] = find_set(x);
- }
- }
- intKruskal(intn)
- {
- intsum = 0;
- make_set();
- for(inti = 0; i < N; i++)//将边的顺序按从小到大取出来
- {
- if(find_set(V[i].start) != find_set(V[i].end)) //如果改变的两个顶点还不在一个集合中,就并到一个集合里,生成树的长度加上这条边的长度
- {
- Union(V[i].start, V[i].end); //合并两个顶点到一个集合
- sum += V[i].val;
- }
- }
- returnsum;
- }
- intmain()
- {
- for(inti = 0; i < N; i++) //初始化边的数据,在实际应用中可根据具体情况转换并且读取数据,这边只是测试用例
- {
- V[i].start = edge[i][0];
- V[i].end = edge[i][1];
- V[i].val = edge[i][2];
- }
- qsort(V, N, sizeof(V[0]), cmp);
- cout << Kruskal(0)<<endl;
转自:https://blog.youkuaiyun.com/gettogetto/article/details/53216951