Description
Goldbach's conjecture is one of the oldest unsolved problems in number theory and in all of mathematics. It states:
Every even integer, greater than 2, can be expressed as the sum of two primes [1].
Now your task is to check whether this conjecture holds for integers up to 107.
Input
Input starts with an integer T (≤ 300), denoting the number of test cases.
Each case starts with a line containing an integer n (4 ≤ n ≤ 107, n is even).
Output
For each case, print the case number and the number of ways you can express n as sum of two primes. To be more specific, we want to find the number of (a, b) where
1) Both a and b are prime
2) a + b = n
3) a ≤ b
Sample Input
2
6
4
Sample Output
Case 1: 1
Case 2: 1
Note
1. An integer is said to be prime, if it is divisible by exactly two different integers. First few primes are 2, 3, 5, 7, 11, 13, ...
题解:找出两个素数相加等于n的对数,将素数用一个数组记录下来,元素数量一定小于<10000000/2,防T。
代码如下:
#include <iostream>
#include <queue>
#include <math.h>
#include <stdio.h>
#define PI acos(-1)
using namespace std;
#define MAXN 10000010
#define LL long long
bool v[MAXN]={0};
int prime[666666],cnt;
void db()
{
cnt=0;
v[1]=1;
for(int i=2; i<=10000000; i++)
{
if(!v[i])
{
prime[cnt++]=i;//记录素数的数组
for(int j=i+i; j<=10000000; j+=i)
v[j]=1;
}
}
}
int main()
{
db();
int t,cc=0;
cin>>t;
while(t--)
{
int n;
cin>>n;
int ans=0;
for(int i=0; i<cnt; i++)
{
if(prime[i]>=n/2+1)
break;
if(!v[n-prime[i]]&&n>=prime[i]*2)//确保双素数和条件3
ans++;
}
cout<<"Case "<<++cc<<": "<<ans<<endl;
}
return 0;
}