Goldbachs Conjecture (素数打表)

Description

Goldbach's conjecture is one of the oldest unsolved problems in number theory and in all of mathematics. It states:

Every even integer, greater than 2, can be expressed as the sum of two primes [1].

Now your task is to check whether this conjecture holds for integers up to 107.

Input

Input starts with an integer T (≤ 300), denoting the number of test cases.

Each case starts with a line containing an integer n (4 ≤ n ≤ 107, n is even).

Output

For each case, print the case number and the number of ways you can express n as sum of two primes. To be more specific, we want to find the number of (a, b) where

1)      Both a and b are prime

2)      a + b = n

3)      a ≤ b

Sample Input

2

6

4

Sample Output

Case 1: 1

Case 2: 1

Note

1.      An integer is said to be prime, if it is divisible by exactly two different integers. First few primes are 2, 3, 5, 7, 11, 13, ...

题解:找出两个素数相加等于n的对数,将素数用一个数组记录下来,元素数量一定小于<10000000/2,防T。

代码如下:

#include <iostream>
#include <queue>
#include <math.h>
#include <stdio.h>
#define PI acos(-1)
using namespace std;
#define MAXN 10000010
#define LL long long
bool v[MAXN]={0};
int prime[666666],cnt;
void db()
{
    cnt=0;
    v[1]=1;
    for(int i=2; i<=10000000; i++)
    {
        if(!v[i])
        {
            prime[cnt++]=i;//记录素数的数组
            for(int j=i+i; j<=10000000; j+=i)
                v[j]=1;
        }
    }
}
int main()
{
db();
    int t,cc=0;
    cin>>t;
    while(t--)
    {
    int n;
        cin>>n;
        int ans=0;
        for(int i=0; i<cnt; i++)
        {
            if(prime[i]>=n/2+1)
                break;
            if(!v[n-prime[i]]&&n>=prime[i]*2)//确保双素数和条件3
                ans++;
        }
        cout<<"Case "<<++cc<<": "<<ans<<endl;
    }
    return 0;
}

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值