活动报名|Agents开放世界自主智能体的构建JARVIS-1

北京大学的研究者介绍了JARVIS-1,一个能执行复杂任务的智能体,能在Minecraft中运用预训练知识和经验进行规划。演讲将探讨构建指令跟随代理的挑战及解决方案。
部署运行你感兴趣的模型镜像

cbfeeeb252b7c32ed8ab3831984a85fe.png

智源Talk 第57期:开放世界自主智能体的构建

日期:12月6日(周三)14:30-15:30

主题简介:

开发能够在复杂领域执行各种任务的智能体是实现具备通用能力的人工智能的关键步骤。JARVIS-1是一个基于视觉语言基础模型的智能体,能够从多模态用户和环境输入中生成适用于长期任务的计划,并将其转化为在《我的世界》中的鼠标和键盘控制。我们为JARVIS-1配备了一个多模态memory模块,使JARVIS-1可以利用预训练的知识和在实际游戏生存中收集的经验进行规划。在使用和人类一致的视觉观察空间和动作空间下,JARVIS-1能够从头完成开放世界游戏《我的世界》下的200多个任务,包括短期的“砍树”到长期的“合成钻石镐”等。随着JARVIS-1与环境交互时间的增长,我们还观察到了Agent持续的改进,尤其是在完成更复杂的任务方面。

在这次演讲中,我们首先会介绍如何在像Minecraft这样的开放世界中构建指令跟随代理。然后,我们将确定当扩展到长期任务时,开放世界代理面临的挑战以及如何利用预训练基础模型来解决这些问题。最后,我们将展示在Minecraft上进行的大量实验来验证代理的能力。

Developing advanced agents that can perform a wide range of tasks in complex domains is a crucial step towards achieving artificial intelligence with general capabilities. We introduce JARVIS-1, a multimodal language model based agent that can robustly produce plans for long-horizon tasks from multimodal user and environment inputs, and translate them into motor control in Minecraft, a popular yet challenging open-world testbed for generalist agents. We outfit JARVIS-1 with a multimodal memory, which facilitates planning using both pre-trained knowledge and its actual game survival experiences. JARVIS-1 is capable of completing over 200 different tasks using control and observation space similar to humans. These tasks range from short-horizon tasks, e.g., "chopping trees" to long-horizon tasks, e.g., "obtaining a diamond pickaxe". 

In this talk, we will first introduce how to build instruction-following agents in open world like Minecraft. Then we will identify challenges for open-world agents when scaling up to long-horizon tasks and how to leverage pre-trained foundation models to address it. Finally, we will present extensive experiments conducted on Minecraft to validate the agent’s abilities.

报告嘉宾:

王子豪,北京大学人工智能研究院博士生,导师为梁一韬教授。曾获国家奖学金、北京市优秀毕业生等荣誉。主要研究方向为开放世界下多任务智能体的构建,尤其关心基于基础模型的智能体的泛化能力。近年来在CVPR、NeurIPS等人工智能顶会上发表多篇论文,曾获ICML研讨会最佳论文奖。担任ICML、NeurIPS、ICLR等多个国际机器学习会议审稿人。

蔡少斐,北京大学人工智能研究院博士生,导师是梁一韬教授。在此之前,他分别于西安交通大学和中国科学院计算技术研究所获得学士、硕士学位。他的研究兴趣主要包括决策大模型、语言大模型以及游戏智能。他已在 CVPR 、NeurIPS 等人工智能顶会上发表过多篇论文,并专注于开放世界下智能体决策控制研究。担任 NeurIPS 、 ICLR 等国际学术会议审稿人。

扫描下方二维码报名

a96ab5aecaacfb6dc42804ffcfbab210.png

还可加入线上社区,进行在线提问

de6cdf6a070a061d44048a442e64938e.png

您可能感兴趣的与本文相关的镜像

Dify

Dify

AI应用
Agent编排

Dify 是一款开源的大语言模型(LLM)应用开发平台,它结合了 后端即服务(Backend as a Service) 和LLMOps 的理念,让开发者能快速、高效地构建和部署生产级的生成式AI应用。 它提供了包含模型兼容支持、Prompt 编排界面、RAG 引擎、Agent 框架、工作流编排等核心技术栈,并且提供了易用的界面和API,让技术和非技术人员都能参与到AI应用的开发过程中

评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值