利用Python进行数据分析-----绘图和可视化

利用Python进行数据分析-----绘图和可视化

在这里插入图片描述

import numpy as np
import pandas as pd
PREVIOUS_MAX_ROWS = pd.options.display.max_rows
pd.options.display.max_rows = 20
np.random.seed(12345)
import matplotlib.pyplot as plt
import matplotlib
plt.rc('figure', figsize=(10, 6))
np.set_printoptions(precision=4, suppress=True)

matplotlib API 入门

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

plt.plot(np.random.randn(50).cumsum(), 'k--')

在这里插入图片描述

_ = ax1.hist(np.random.randn(100), bins=20, color='k', alpha=0.3)
ax2.scatter(np.arange(30), np.arange(30) + 3 * np.random.randn(30))

在这里插入图片描述
在这里插入图片描述

fig, axes = plt.subplots(2, 2, sharex=True, sharey=True)
for i in range(2):
    for j in range(2):
        axes[i, j].hist(np.random.randn(500), bins=50, color='k', alpha=0.5)
plt.subplots_adjust(wspace=0, hspace=0)

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述

data = np.random.randn(30).cumsum()
plt.plot(data, 'k--', label='Default')
plt.plot(data, 'k-', drawstyle='steps-post', label='steps-post')
plt.legend(loc='best'
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值