python与R语言手推logistic回归(梯度下降法/牛顿法)

这篇博客介绍了Logistic回归在分类问题中的应用,通过Python和R语言分别展示了如何建立和训练模型。在Python中,使用了随机梯度下降法优化交叉熵损失函数;在R语言中,实现了最大似然估计的参数求解。实验结果显示,两种实现都能达到高精度的分类效果。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

概念及应用:

logistic回归主要用于分类问题中,遇到k分类问题时则转化为k个二分类问题即可。
logistic回归是将logit曲线套用在解释变量线性组合上,利用极大似然法进行参数估计,将似然函数(二项分布交叉熵)作为目标函数,利用最优化方法(牛顿法、梯度下降法)进行求解。

python实现

数据载入及切分

from sklearn import datasets
from sklearn.model_selection import train_test_split
iris = datasets.load_iris()
X = iris.data
y = iris.target
X = X[y != 2]
y = y[y != 2]
xtrain,xtest,ytrain,ytest=train_test_split(
    X, y, test_size=0.3, random_state=42)

中间函数准备

tip:由于exp(x)呈现指数级增长,易导致float溢出,可以对x范围进行控制防止溢出。

def sigmoid(z):
  # #防止溢出在RuntimeWarning: overflow encountered in exp
    return 1 / (1.0 + np.exp(-np.clip(z,-100,10000)))
def f(x,w):#x为n*k w为k*1
    return sigmoid(x@w )
def predict(x,w):
    return np.round(f(x, w))

利用随机梯度下降法进行求解

#损失函数为两个伯努利分布的交叉熵由极大似然估计进行推导
def cross_entropy_loss(y_pred, y_label):
    cross_loss=-np.dot(y_label,np.log(y_pred))-np.dot(np.log(1-y_label),1-y_pred)
    return cross_loss

def gradient(x, y, w):
    y_pred=predict(x,w)
    w_grad=np.matmul(x
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值