Tensorflow CPU version Installation on Ubuntu 16.04

本文档详细介绍了如何在Ubuntu系统中创建具有管理员权限的新用户,并安装Anaconda及TensorFlow等必要的Python库,包括配置环境变量、安装依赖库及验证安装是否成功。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1. Create new user with administration privilege

Add new user

adduser XXXX

Add administrator privilege

visudo

Add following line into file

XXXX ALL=(ALL:ALL) ALL

2.Install Anaconda

Download and Installation
wget https://repo.anaconda.com/archive/Anaconda3-5.2.0-Linux-x86_64.sh
sh Anaconda3-5.2.0-Linux-x86_64.sh
Reload PATH setting

source .bashrc

Test

python

Python 3.6.5 |Anaconda, Inc.| (default, Apr 29 2018, 16:14:56)
[GCC 7.2.0] on linux
Type "help", "copyright", "credits" or "license" for more information.

Python 3.6.5 install successfully

3. Install Other Libraries

pip install msgpack
pip install xgboost

4.Install Tensorflow

Create dedicate environment
conda create -n tensorflow
source activate tensorflow
Install Tensorflow ready compiled package
pip install --ignore-installed --upgrade https://files.pythonhosted.org/packages/04/79/a37d0b373757b4d283c674a64127bd8864d69f881c639b1ee5953e2d9301/tensorflow-1.5.0-cp36-cp36m-manylinux1_x86_64.whl
Test

python

import tensorflow as tf
hello = tf.constant('Hello, TensorFlow!') 
sess = tf.Session() 
print(sess.run(hello)) 
h5py future warning
import tensorflow as tf
/home/dzhu/anaconda3/lib/python3.6/site-packages/h5py/__init__.py:36: FutureWarning: Conversion of the second argument of issubdtype from `float` to `np.floating` is deprecated. In future, it will be treated as `np.float64 == np.dtype(float).type`.
  from ._conv import register_converters as _register_converters

Fix: Should ypgrade h5py to version 2.8.0
pip install h5py==2.8.0

Issues
2018-06-16 14:09:21.414634: I tensorflow/core/platform/cpu_feature_guard.cc:137] Your CPU supports instructions that this TensorFlow binary was not compiled to use: SSE4.1 SSE4.2

因为通过pip安装的是manylinux1_X86这是一个通用版本,而目前CPU所支持SSE2个指令集,通用版本并没有用到.
如果要解决这个问题,需要对Tensorflow源码进行不同的编译再安装。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值