文件:Self-focusing .fpw
首先计算了大模场面积的基模随非线性自聚焦效应的收缩。模式求解中通常会忽略非线性效应。然而,编写数行程序代码,即可设置折射率分布及其非线性的变化,继而重复计算光纤模式,直至出现自洽解。
该程序也说明了光束传输的应用,可模拟高功率下光束分布的变化。用户可以采用LP01(低功率)与LP11模式的叠加,并研究光纤非线性效应的影响。可见,即使仅有LP11模式被激发,在大功率下也呈现不稳定状态,大部分功率转移到LP10模式中。
可获得以下图形:
图1为给定光功率下模式分布(与自聚焦响应功率相差不大),对应折射率分布条件下的模式分布。可见,非线性效应极大地改变了折射率的分布。

图2为模场面积与光功率的关系。当接近临界功率时,模场面积急剧减小。

图3为最大功率与纤芯半径的函数关系。对应每一个纤芯半径,用户需计算轴上强度达到破坏阈值时的光功率。当然,也需要重新计算每一个功率所对应的模式。

图4为光束分布的变化,模拟了光束的传输特性。


来自“武汉墨光”微信公众号
本文探讨了通过编程模拟非线性自聚焦现象对光纤模式的影响,展示了大模场面积基模收缩过程。重点介绍如何利用LP01和LP11模式研究高功率光束稳定性,并通过图表揭示模场面积、功率与纤芯半径的关系,以及光束传输特性的变化。
1万+

被折叠的 条评论
为什么被折叠?



