Gaussian Process understanding

本文探讨了高斯过程中的核心概念——核函数,详细介绍了径向基核和马顿核两种常见类型,阐述了它们如何衡量分布间的距离,以及在机器学习中应用的重要性。

Definition

Kernel

高斯过程的性质与其协方差函数有密切联系,在构造高斯过程时,一些特定形式的协方差函数被称为核函数。核函数的选择要求满足Mercer定理(Mercer’s theorem),即核函数在样本空间内的任意格拉姆矩阵(Gram matrix)为半正定矩阵(semi-positive definite。这里对高斯过程常见的核函数类型进行总结。

径向基核: κ(r)=exp⁡(−r22l2)\kappa (r)=\exp(-\frac{r^2}{2l^2})κ(r)=exp(2l2r2)
马顿核: κ(r)=21−vΓ(v)()r\kappa (r)= \frac{2^{1-v}}{\Gamma(v)} (\frac{}) rκ(r)=Γ(v)21v()r

所以,其实核本质上就是衡量两个分布之间的距离的一个函数

未完待续。。。

### LoG Edge Detector Implementation and Application The Laplacian of Gaussian (LoG) edge detector is a widely used technique in computer vision for detecting edges by combining smoothing with differentiation. This method involves applying a second derivative operator after convolving an image with a Gaussian filter to reduce noise effects. #### Mathematical Background The LoG operation computes the Laplacian of a function that has been smoothed by convolution with a Gaussian kernel \( G(x, y; \sigma) \). The mathematical expression for this process is given as: \[ \nabla^2(G * I)(x, y) \] where \( G(x, y; \sigma) \) represents the two-dimensional Gaussian distribution defined as follows[^1]: ```python import numpy as np from scipy.ndimage import gaussian_filter, laplace def log_edge_detector(image, sigma=1.0): """ Applies the Laplacian of Gaussian (LoG) edge detection algorithm. Parameters: image (numpy.ndarray): Input grayscale image. sigma (float): Standard deviation of the Gaussian kernel. Returns: numpy.ndarray: Resultant LoG-detected edges. """ # Apply Gaussian blur first blurred_image = gaussian_filter(image, sigma=sigma) # Compute the Laplacian on the blurred image log_result = laplace(blurred_image) return log_result ``` This code snippet demonstrates how to implement the LoG edge detector using Python libraries such as `scipy`. It applies a Gaussian filter followed by computing the Laplacian to detect zero-crossings indicative of edges within images. #### Applications in Computer Vision In practical scenarios, the LoG operator finds extensive usage due to its robustness against noise while preserving significant features like corners or boundaries between objects and backgrounds. For instance, when performing object recognition tasks where precise localization matters significantly, employing techniques based upon higher-order derivatives becomes crucial[^3]. Moreover, integrating superpixel-based methods alongside clustering algorithms enhances segmentation accuracy further through better handling texture variations across regions[^2]. Such combinations allow more sophisticated analyses beyond mere boundary identification towards understanding complex scene structures comprehensively. ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值