Description
You are climbing a stair case. It takes n steps to reach to the top.
Each time you can either climb 1 or 2 steps. In how many distinct ways can you climb to the top?
Note: Given n will be a positive integer.
Example 1:
Input: 2
Output: 2
Explanation: There are two ways to climb to the top.
1. 1 step + 1 step
2. 2 steps
Example 2:
Input: 3
Output: 3
Explanation: There are three ways to climb to the top.
1. 1 step + 1 step + 1 step
2. 1 step + 2 steps
3. 2 steps + 1 step
Solution
consider the final step:
- if the final step is
one step, the ways to reach the top the ways[n-1] - if the final step is
two step, the ways to reach the top the ways[n-2] - and there is no other way.
class Solution {
public:
int climbStairs(int n) {
int ways[1000]={0};
ways[1] = 1;
ways[2] = 2;
for(int i = 3; i <= n ; ++i)
{
ways[i] = ways[i-1] + ways[i-2];
}
return ways[n];
}
};
result:
Runtime: 4 ms, faster than 100.00% of C++ online submissions for Climbing Stairs.
Memory Usage: 8.1 MB, less than 100.00% of C++ online submissions for Climbing Stairs.
20190410
tbc

本文探讨了经典的爬楼梯问题,使用动态规划方法求解到达楼顶的不同路径数量。通过分析每次爬升1或2阶的情况,给出了递推公式,并提供了一个C++实现示例。该解决方案在在线评测中表现出色,运行速度和内存使用均优于100%的提交。

被折叠的 条评论
为什么被折叠?



