Friend
Time Limit: 1000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total Submission(s): 1292 Accepted Submission(s): 630
Problem Description
Friend number are defined recursively as follows.
(1) numbers 1 and 2 are friend number;
(2) if a and b are friend numbers, so is ab+a+b;
(3) only the numbers defined in (1) and (2) are friend number.
Now your task is to judge whether an integer is a friend number.
(1) numbers 1 and 2 are friend number;
(2) if a and b are friend numbers, so is ab+a+b;
(3) only the numbers defined in (1) and (2) are friend number.
Now your task is to judge whether an integer is a friend number.
Input
There are several lines in input, each line has a nunnegative integer a, 0<=a<=2^30.
Output
For the number a on each line of the input, if a is a friend number, output “YES!”, otherwise output “NO!”.
Sample Input
3 13121 12131
Sample Output
YES! YES! NO!
数学推论题:此题题意是一个friend number是最终由1和2这对友好数字演化而来的,且这个friend number必须满足由两个其他friend number这样构成ab+a+b;
假设这个friend number=ab+a+b;
那么:
friend number=ab+a+b+1-1;
friend number=(a+1)*(b+1)-1;
因为a和b也是其他friend number,那么可设a=(c+1)*(d+1)-1;b=(e+1)*(f+1)-1;代入得:
friend number=(c+1)*(d+1)*(e+1)*(f+1)-1;
又因为c,d,e,f也是其他friend number,可以在设在代入,一直带到原始的friend number,1和2为止,可以得到friend number=((1+1)^x)*((1+2)^y)-1;
friend number=(2^x)*(3^y)-1;(x,y>=0);
也就是只要这个数 N 满足 N++后能被2整数得到一个整数X后继续能被3整数得到一个Y,那么这个数 N 就是friend number了;
C++代码如下:(比较灵活,这里换了另外一种思路去避开找X和Y直接求结果);
#include<iostream>
#include<cstdio>
using namespace std;
int main()
{
int n;
while (scanf("%d",&n) == 1)
{
if (n == 0)
{
printf("NO!\n");
continue;
}
n++;
while(n)
{
if (n % 2 == 0)
n /= 2;
else
break;
}
while(n)
{
if (n % 3 == 0)
n /= 3;
else
break;
}
if (n == 1)
printf("YES!\n");
else
printf("NO!\n");
}
return 0;
}