1004. Counting Leaves (30)

本文提供了一道 PAT-A 1004 的详细解答过程,题目要求统计多叉树中每层的叶子节点数量,并通过递归方法实现了节点高度的计算,最终输出每层叶子节点的数量。

题目链接:http://www.patest.cn/contests/pat-a-practise/1004

题目:




 
时间限制
400 ms
内存限制
65536 kB
代码长度限制
16000 B
判题程序
Standard
作者
CHEN, Yue
A family hierarchy is usually presented by a pedigree tree. Your job is to count those family members who have no child.

Input

Each input file contains one test case. Each case starts with a line containing 0 < N < 100, the number of nodes in a tree, and M (< N), the number of non-leaf nodes. Then M lines follow, each in the format:

ID K ID[1] ID[2] ... ID[K]
where ID is a two-digit number representing a given non-leaf node, K is the number of its children, followed by a sequence of two-digit ID's of its children. For the sake of simplicity, let us fix the root ID to be 01.

Output

For each test case, you are supposed to count those family members who have no child for every seniority level starting from the root. The numbers must be printed in a line, separated by a space, and there must be no extra space at the end of each line.

The sample case represents a tree with only 2 nodes, where 01 is the root and 02 is its only child. Hence on the root 01 level, there is 0 leaf node; and on the next level, there is 1 leaf node. Then we should output "0 1" in a line.

Sample Input
2 1
01 1 02
Sample Output
0 1

分析:

题目是说有一个类似家庭族谱的东西,开始的时候是由一个根节点(编号定为01),让你找出每一代中没有孩子的节点个数。

抽象出来就是对于一个多叉树,找出每一层的叶子节点的数目

*注意点

1)因为是根据每一层来统计叶子节点,所以需要一个高度的字段

2)输入的数据可能是乱序的,不一定是按照从根到叶子的顺序

AC的代码:

#include<stdio.h>
#include<string.h>
#include<vector>
#include<queue>
using namespace std;
struct Node{
 int parent;
 int high;
 bool has_child;//如果有孩子,则说明不是叶子节点
}node[102];//节点结构体,包括父母,高度,和是否有孩子
int high_max;//最大高度(深度)
int my_count[102];//记录每层高度的叶子节点数目
int find_high(int i){
 if(node[node[i].parent].high == 0)
  return node[i].high = find_high(node[i].parent) + 1;
 else
  return node[i].high = node[node[i].parent].high + 1;
}//递归找出节点的高度
int main(void){
 int i,j,n,m;
 while(scanf("%d%d",&n,&m) != EOF){
  for(i = 1; i <= n; i ++){
   node[i].parent = 0;
   node[i].high = 0;
   node[i].has_child = false;
   my_count[i] = 0;
  }//init()初始化
  for(i = 1; i <= m; i ++){
   int k,a,b;
   scanf("%d%d",&a,&k);
   node[a].has_child = true;
   for(j = 1; j <= k; j ++){
    scanf("%d",&b);
    node[b].parent = a;
   }
  }//接收输入,记录各节点
  node[1].high = 1;//初始化,不要忘了
  for(i = 2; i <= n; i ++){
   find_high(i);
  }//因为输入的数据可能是乱序的,所以需要在数据输完之后进行查找高度的操作
  for(i = 1; i <= n; i ++){
   if(high_max < node[i].high)
    high_max = node[i].high;
  }//找到最大的高度(深度)
  for(i = 1; i <= n; i ++){
   if(node[i].has_child == false){
    my_count[node[i].high] ++;
   }
  }找到各层中高度的叶子节点数目
  for(i = 1; i <= high_max; i++){
   if(i == high_max)
    printf("%d", my_count[i]);
   else
    printf("%d ", my_count[i]);
  }
 }//格式化输出
 return 0;
}


P.S:

对于这一题,可以用这样的方法,方便理解。不过实际上,对于层序遍历或树的节点的构造,应该要有更正规的方法(前者用queue,后者用Node *),这在以后会提到。


——Apie陈小旭
【负荷预测】基于VMD-CNN-LSTM的负荷预测研究(Python代码实现)内容概要:本文介绍了基于变分模态分解(VMD)、卷积神经网络(CNN)和长短期记忆网络(LSTM)相结合的VMD-CNN-LSTM模型在负荷预测中的研究与应用,采用Python代码实现。该方法首先利用VMD对原始负荷数据进行分解,降低序列复杂性并提取不同频率的模态分量;随后通过CNN提取各模态的局部特征;最后由LSTM捕捉时间序列的长期依赖关系,实现高精度的负荷预测。该模型有效提升了预测精度,尤其适用于非平稳、非线性的电力负荷数据,具有较强的鲁棒性和泛化能力。; 适合人群:具备一定Python编程基础和深度学习背景,从事电力系统、能源管理或时间序列预测相关研究的科研人员及工程技术人员,尤其适合研究生、高校教师及电力行业从业者。; 使用场景及目标:①应用于日前、日内及实时负荷预测场景,支持智慧电网调度与能源优化管理;②为研究复合型深度学习模型在非线性时间序列预测中的设计与实现提供参考;③可用于学术复现、课题研究或实际项目开发中提升预测性能。; 阅读建议:建议读者结合提供的Python代码,深入理解VMD信号分解机制、CNN特征提取原理及LSTM时序建模过程,通过实验调试参数(如VMD的分解层数K、惩罚因子α等)优化模型性能,并可进一步拓展至风电、光伏等其他能源预测领域。
【轴承故障诊断】基于融合鱼鹰和柯西变异的麻雀优化算法OCSSA-VMD-CNN-BILSTM轴承诊断研究【西储大学数据】(Matlab代码实现)内容概要:本文研究了一种基于融合鱼鹰和柯西变异的麻雀优化算法(OCSSA)优化变分模态分解(VMD)参数,并结合卷积神经网络(CNN)与双向长短期记忆网络(BiLSTM)的轴承故障诊断模型。该方法利用西储大学轴承数据集进行验证,通过OCSSA算法优化VMD的分解层数K和惩罚因子α,有效提升信号去噪与特征提取能力;随后利用CNN提取故障特征的空间信息,BiLSTM捕捉时间序列的长期依赖关系,最终实现高精度的轴承故障识别。整个流程充分结合了智能优化、信号处理与深度学习技术,显著提升了复杂工况下故障诊断的准确性与鲁棒性。; 适合人群:具备一定信号处理、机器学习及MATLAB编程基础的研究生、科研人员及从事工业设备故障诊断的工程技术人员。; 使用场景及目标:①解决传统VMD参数依赖人工经验选择的问题,实现自适应优化;②构建高效准确的轴承故障诊断模型,适用于旋转机械设备的智能运维与状态监测;③为类似机电系统故障诊断提供可借鉴的技术路线与代码实现参考。; 阅读建议:建议结合提供的Matlab代码进行实践操作,重点关注OCSSA算法的设计机制、VMD参数优化过程以及CNN-BiLSTM网络结构的搭建与训练细节,同时可尝试在其他故障数据集上迁移应用以加深理解。
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值