Spark中mapPartitions使用
map: 比如一个partition中有1万条数据;那么你的function要执行和计算1万次。
MapPartitions:一个task仅仅会执行一次function,function一次接收所有的partition数据。只要执行一次就可以了,性能比较高。
如果在map过程中需要频繁创建额外的对象(例如将rdd中的数据通过jdbc写入数据库,map需要为每个元素创建一个链接而mapPartition为每个partition创建一个链接),则mapPartitions效率比map高的多。
SparkSql或DataFrame默认会对程序进行mapPartition的优化。
MapPartitions的缺点:一定是有的。
如果是普通的map操作,一次function的执行就处理一条数据;那么如果内存不够用的情况下,比如处理了1千条数据了,那么这个时候内存不够了,那么就可以将已经处理完的1千条数据从内存里面垃圾回收掉,或者用其他方法,腾出空间来吧。
所以说普通的map操作通常不会导致内存的OOM异常。
但是MapPartitions操作,对于大量数据来说,比如甚至一个partition,100万数据,一次传入一个function以后,那么可能一下子内存不够,但是又没有办法去腾出内存空间来,可能就OOM,内存溢出。
4017

被折叠的 条评论
为什么被折叠?



