在准备好ChineseNER_input_data后,开始跑NER出现的问题

在尝试运行ChineseNER项目并准备了输入数据后,遇到了训练过程中的AssertionError。问题出现在`loader.py`的第33行,原本的代码检查word长度是否大于等于2。通过注释掉该断言来解决此错误,之后程序得以继续运行。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

第一次跑

C:\Users\Administrator\Desktop\ChineseNER>python main.py --train=True --clean=T

Building prefix dict from E:\python3\lib\site-packages\jieba\dict.txt ...
Loading model from cache C:\Users\ADMINI~1\AppData\Local\Temp\jieba.cache
Loading model cost 1.144 seconds.
Prefix dict has been built succesfully.
['O']
Traceback (most recent call last):
  File "main.py", line 225, in <module>
    if __name__ == "__main__":
  File "E:\python3\lib\site-packages\tensorflow\python\platform\app.py", line 48
    _sys.exit(main(_sys.argv[:1] + flags_passthrough))
  File "main.py", line 219, in main
    clean(FLAGS)
  File "main.py", line 106, in train
    # load data sets
  File "C:\Users\Administrator\Desktop\ChineseNER\loader.py", line 33, in load_s
    assert len(word) >= 2, print([word[0]])

AssertionError: None

改错:将loader.py", line 33,的

assert len(word) >= 2, print([word[0]]) 

注释掉



第二次跑

C:\Users\Administrator\Desktop\ChineseNER>python main.py --train=True --clean=T

Building prefix dict from E:\python3\lib\site-packages\jieba\dict.txt ...
Loading model from cache C:\Users\ADMINI~1\AppData\Local\Temp\jieba.cache
Loading model cost 1.261 seconds.
Prefix dict has been built succesfully.
Found 1418 unique words (165783 in total)
Loading pretrained embeddings from wiki_100.utf8...
Found 20 unique named entity tags
1 / 0 / 1 sentences in train / dev / test.
2018-07-11 15:55:36,811 - log\train.log - INFO - num_chars      :       1541
2018-07-11 15:55:36,812 - log\train.log - INFO - char_dim       :       100
2018-07-11 15:55:36,812 - log\train.log - INFO - num_tags       :       20
2018-07-11 15:55:36,813 - log\train.log - INFO - seg_dim        :       20
2018-07-11 15:55:36,816 - log\train.log - INFO - lstm_dim       :       100
2018-07-11 15:55:36,817 - log\train.log - INFO - batch_size     :       20
2018-07-11 15:55:36,817 - log\train.log - INFO - emb_file       :       wiki_100
2018-07-11 15:55:36,817 - log\train.log - INFO - clip           :       5
2018-07-11 15:55:36,817 - log\train.log - INFO - dropout_keep   :       0.5
2018-07-11 15:55:36,818 - log\train.log - INFO - optimizer      :       adam
2018-07-11 15:55:36,818 - log\train.log - INFO - lr             :       0.001
2018-07-11 15:55:36,821 - log\train.log - INFO - tag_schema     :       iobes
2018-07-11 15:55:36,821 - log\train.log - INFO - pre_emb        :       True
2018-07-11 15:55:36,821 - log\train.log - INFO - zeros          :       False
2018-07-11 15:55:36,821 - log\train.log - INFO - lower          :       True
2018-07-11 15:55:36.822838: W c:\tf_jenkins\home\workspace\release-win\m\windows
SSE instructions, but these are available on your machine and could speed up CPU
2018-07-11 15:55:36.822946: W c:\tf_jenkins\home\workspace\release-win\m\windows
SSE2 instructions, but these are available on your machine and could speed up CP
2018-07-11 15:55:36.823026: W c:\tf_jenkins\home\workspace\release-win\m\windows
SSE3 instructions, but these are available on your machine and could speed up CP
2018-07-11 15:55:36.823112: W c:\tf_jenkins\home\workspace\release-win\m\windows
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值