Hadoop全链路监控解决方案

本文介绍了大数据工程师如何实现Hadoop集群的全面监控,包括宏观层面和微观层面的监控策略,通过改造Hadoop源码提升实时监控能力,并分享了相关监控工具的链接。监控内容涵盖Node、Job、Task等组件,旨在智能发现和定位问题,提高集群效率。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

前言

我在最近的几篇文章中都或多或少的提到了一个很重要的词-"监控".为什么要提到这个词呢,因为如果你和我一样是一名大数据工程师,你手下管理着批量的集群机器,并且同时这个集群的规模还会不定时的扩大,机器一旦变多,发生问题的频率和类型就会变多,所以这是,你靠人肉去分析某台机器上的日志,OK,1台机器,2台机器,尚且可以解决办法,但是100台,1000台呢,当然如果工程师还这么做的话,我想他会抓狂的.所以如何做到智能化发现问题,定位问题,就显得很关键了,最理想的结果是,你拥有你的集群机器中每天跑的job的各种指标数据,然后你动动鼠标,通过展示出来的图形界面,就迅速的发现了问题.这也是正是我最近在做的一件事情,效果还算不错.下面是我近1个月来,对于我们部门的Hadoop集群做的一些监控方面的事情,谈不上高大上的结构,我们是如何以最简单的方式达到最大化的效果,希望能给大家带来帮助.


监控两大主题

监控的大方向是想好了,但是我们要监控哪些指标,有必要提一下,要想做好监控,首先你要了解Hadoop这一整套的系统逻辑,大致了解即可,那么我们是怎么做的呢.分为2大方向,宏观层面和微观层面.宏观角度的理解就是Node级别,拓扑结构级别,DataNode,NameNode,JournalNode,ResourceManager,NodeManager,主要就是这5大组件,通过分析这些节点上的监控数据,一般你能够定位到慢节点,可能某台机器的网络出问题了,或者说某台机器执行的时间总是大于正常机器等等这样类似的问题.刚刚说的是一个监控方向,还有1个是微观层面,就是细粒度化的监控,基于user用户级别,基于单个job,单个task级别的监控,像这类监控指标就是另一大方向,这类的监控指标在实际的使用场景中特别重要,一旦你的集群资源是开放给外面的用户使用,用户本身不了解你的这套机制原理,很容易会乱申请资源,造成严重拖垮集群整体运作效率的事情,所以这类监控的指标就是为了防止这样的事情发生.


宏观层面监控

OK,两大主题监控方向确定,下面谈谈具体的实践方案,想必这也是大家所关心的.首先要先想能不能通过最简单的方式直接拿到一些数据,比如RPC接口去取,这样的方式的确是有的,我们用了YarnClient的获取nodeReport方法,做了这么一个获取工具,下面是核心代码:

YarnClient client;
		client = YarnClient.createYarnClient();
		client.init(new Configuration());
		client.start();

List<NodeReport> nodesReport = client.getNodeReports();
...
这样就得到nodeManager中的许多数据,包括正在运行的container数量,使用的内存大小,核数多少等等信息,同理DataNode的数据也可以以类似的方式获取,这里就不给出代码了.在分节点的统计代码中,还有一项指标也可以帮助我们发现节点异常问题,我们对各个IP对namenode的rpc请求量
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值